铜束电子合金化与钛粉

P. Smolarczyk, M. Krupiński, M. Węglowski, W. Pakieła, P. Śliwiński
{"title":"铜束电子合金化与钛粉","authors":"P. Smolarczyk, M. Krupiński, M. Węglowski, W. Pakieła, P. Śliwiński","doi":"10.24425/afe.2024.149255","DOIUrl":null,"url":null,"abstract":"The paper presents the effect of electron beam alloying on the surface of a copper flat bar (M1Ez4) with titanium powder. Due to the quality of the surface after alloying and the obtained properties, the parameters used were given which met the assumed conditions to the greatest extent. The microstructure and mechanical properties as well as the chemical composition of surface-modified electron-beam copper show improved mechanical properties, i.e. hardness and abrasion resistance. This article uses research techniques using scanning electron microscopy and analysis of chemical composition in micro-areas (EDS). In order to examine the properties of the material after electron beam modification, hardness measurements were performed at low loads (HV0.1), abrasion resistance was tested, and conductivity was also measured. As a result of modifying the chemical and phase composition of M1E copper using an electron beam, the hardness increased by 46%, while the conductivity decreased by 16% due to the formation of intermetallic phases during solidification.","PeriodicalId":505283,"journal":{"name":"Archives of Foundry Engineering","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper Beam Electron Alloying with Ti Powder\",\"authors\":\"P. Smolarczyk, M. Krupiński, M. Węglowski, W. Pakieła, P. Śliwiński\",\"doi\":\"10.24425/afe.2024.149255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the effect of electron beam alloying on the surface of a copper flat bar (M1Ez4) with titanium powder. Due to the quality of the surface after alloying and the obtained properties, the parameters used were given which met the assumed conditions to the greatest extent. The microstructure and mechanical properties as well as the chemical composition of surface-modified electron-beam copper show improved mechanical properties, i.e. hardness and abrasion resistance. This article uses research techniques using scanning electron microscopy and analysis of chemical composition in micro-areas (EDS). In order to examine the properties of the material after electron beam modification, hardness measurements were performed at low loads (HV0.1), abrasion resistance was tested, and conductivity was also measured. As a result of modifying the chemical and phase composition of M1E copper using an electron beam, the hardness increased by 46%, while the conductivity decreased by 16% due to the formation of intermetallic phases during solidification.\",\"PeriodicalId\":505283,\"journal\":{\"name\":\"Archives of Foundry Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Foundry Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/afe.2024.149255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/afe.2024.149255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了钛粉电子束合金化对铜扁棒(M1Ez4)表面的影响。根据合金化后的表面质量和获得的性能,给出了最大程度满足假设条件的参数。表面改性电子束铜的微观结构和机械性能以及化学成分都显示出更好的机械性能,即硬度和耐磨性。本文采用了扫描电子显微镜和微区化学成分分析(EDS)的研究技术。为了研究电子束改性后材料的性能,在低负荷(HV0.1)下进行了硬度测量,测试了耐磨性,还测量了导电性。使用电子束改变 M1E 铜的化学成分和相组成后,硬度提高了 46%,而由于在凝固过程中形成了金属间相,导电性降低了 16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Copper Beam Electron Alloying with Ti Powder
The paper presents the effect of electron beam alloying on the surface of a copper flat bar (M1Ez4) with titanium powder. Due to the quality of the surface after alloying and the obtained properties, the parameters used were given which met the assumed conditions to the greatest extent. The microstructure and mechanical properties as well as the chemical composition of surface-modified electron-beam copper show improved mechanical properties, i.e. hardness and abrasion resistance. This article uses research techniques using scanning electron microscopy and analysis of chemical composition in micro-areas (EDS). In order to examine the properties of the material after electron beam modification, hardness measurements were performed at low loads (HV0.1), abrasion resistance was tested, and conductivity was also measured. As a result of modifying the chemical and phase composition of M1E copper using an electron beam, the hardness increased by 46%, while the conductivity decreased by 16% due to the formation of intermetallic phases during solidification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信