{"title":"生长激素释放激素拮抗剂对毒素诱导的内皮损伤的保护作用","authors":"Saikat Fakir, N. Barabutis","doi":"10.3390/endocrines5010008","DOIUrl":null,"url":null,"abstract":"GHRH regulates the secretion of GH from the anterior pituitary gland, previously associated with cancer progression and inflammation. An emerging body of evidence suggests that GHRHAnt support endothelial barrier function, but the mechanisms mediating these events are not completely understood. In the present study, it is demonstrated that the GHRHAnt JV-1-36 counteracts barrier dysfunction due to LPS or LTA treatment in HUVECs, utilizing the Dextran–FITC assay. Moreover, it is shown in BPAECs that these bacterial toxins increase ROS generation, and that this effect is counteracted by JV-1-36, which reinstates the redox balance. The possible involvement of NEK2 in the beneficial activities of GHRHAnt in IFN-γ- and LPS-triggered hyperpermeability was also assessed, since that kinase is involved in inflammatory responses. NEK2 was increased in the inflamed cells, and JV-1-36 counteracted those endothelial events. Our data support the beneficial effects of GHRHAnt in toxin-induced endothelial injury.","PeriodicalId":72908,"journal":{"name":"Endocrines","volume":"346 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Activities of Growth Hormone-Releasing Hormone Antagonists against Toxin-Induced Endothelial Injury\",\"authors\":\"Saikat Fakir, N. Barabutis\",\"doi\":\"10.3390/endocrines5010008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GHRH regulates the secretion of GH from the anterior pituitary gland, previously associated with cancer progression and inflammation. An emerging body of evidence suggests that GHRHAnt support endothelial barrier function, but the mechanisms mediating these events are not completely understood. In the present study, it is demonstrated that the GHRHAnt JV-1-36 counteracts barrier dysfunction due to LPS or LTA treatment in HUVECs, utilizing the Dextran–FITC assay. Moreover, it is shown in BPAECs that these bacterial toxins increase ROS generation, and that this effect is counteracted by JV-1-36, which reinstates the redox balance. The possible involvement of NEK2 in the beneficial activities of GHRHAnt in IFN-γ- and LPS-triggered hyperpermeability was also assessed, since that kinase is involved in inflammatory responses. NEK2 was increased in the inflamed cells, and JV-1-36 counteracted those endothelial events. Our data support the beneficial effects of GHRHAnt in toxin-induced endothelial injury.\",\"PeriodicalId\":72908,\"journal\":{\"name\":\"Endocrines\",\"volume\":\"346 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/endocrines5010008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/endocrines5010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protective Activities of Growth Hormone-Releasing Hormone Antagonists against Toxin-Induced Endothelial Injury
GHRH regulates the secretion of GH from the anterior pituitary gland, previously associated with cancer progression and inflammation. An emerging body of evidence suggests that GHRHAnt support endothelial barrier function, but the mechanisms mediating these events are not completely understood. In the present study, it is demonstrated that the GHRHAnt JV-1-36 counteracts barrier dysfunction due to LPS or LTA treatment in HUVECs, utilizing the Dextran–FITC assay. Moreover, it is shown in BPAECs that these bacterial toxins increase ROS generation, and that this effect is counteracted by JV-1-36, which reinstates the redox balance. The possible involvement of NEK2 in the beneficial activities of GHRHAnt in IFN-γ- and LPS-triggered hyperpermeability was also assessed, since that kinase is involved in inflammatory responses. NEK2 was increased in the inflamed cells, and JV-1-36 counteracted those endothelial events. Our data support the beneficial effects of GHRHAnt in toxin-induced endothelial injury.