增强物联网 WSN 的寿命 - 改良模糊灰狼优化器 (MFGWO) 方法

B. Krishna Satish
{"title":"增强物联网 WSN 的寿命 - 改良模糊灰狼优化器 (MFGWO) 方法","authors":"B. Krishna Satish","doi":"10.59256/ijire.20240502008","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) are gaining prominence for diverse applications, including environmental monitoring and industrial automation. Yet, their energy constraint poses a significant challenge. Clustering, a prevalent technique, optimizes energy utilization by grouping nodes into clusters and appointing a cluster head (CH) to aggregate data and communicate with the base station (BS). This paper presents a novel clustering and CH selection algorithm for a energy varied WSNs, leveraging modified fuzzy c-means (FCM) clustering and Grey Wolf Optimization (GWO). Modified FCM partitions nodes based on their similarity, while GWO identifies CHs in each cluster, considering energy levels, centrality, distance from the BS, and dynamic node distribution. Simulation results demonstrate the superior energy efficiency and network lifetime of our proposed approach compared to existing algorithms. Key Word: Wireless Sensor Networks, Modified Fuzzy C Means algorithm (MFCM), Grey Wolf Optimizer (GWO)","PeriodicalId":516932,"journal":{"name":"International Journal of Innovative Research in Engineering","volume":"57 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifespan Enhancement of WSN for IoT - Modified Fuzzy Grey Wolf Optimizer (MFGWO) Approach\",\"authors\":\"B. Krishna Satish\",\"doi\":\"10.59256/ijire.20240502008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Networks (WSNs) are gaining prominence for diverse applications, including environmental monitoring and industrial automation. Yet, their energy constraint poses a significant challenge. Clustering, a prevalent technique, optimizes energy utilization by grouping nodes into clusters and appointing a cluster head (CH) to aggregate data and communicate with the base station (BS). This paper presents a novel clustering and CH selection algorithm for a energy varied WSNs, leveraging modified fuzzy c-means (FCM) clustering and Grey Wolf Optimization (GWO). Modified FCM partitions nodes based on their similarity, while GWO identifies CHs in each cluster, considering energy levels, centrality, distance from the BS, and dynamic node distribution. Simulation results demonstrate the superior energy efficiency and network lifetime of our proposed approach compared to existing algorithms. Key Word: Wireless Sensor Networks, Modified Fuzzy C Means algorithm (MFCM), Grey Wolf Optimizer (GWO)\",\"PeriodicalId\":516932,\"journal\":{\"name\":\"International Journal of Innovative Research in Engineering\",\"volume\":\"57 34\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Innovative Research in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59256/ijire.20240502008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Research in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59256/ijire.20240502008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络(WSN)在环境监测和工业自动化等各种应用中日益突出。然而,它们的能量限制构成了重大挑战。聚类是一种流行的技术,它通过将节点分组为簇并指定一个簇头(CH)来汇总数据并与基站(BS)通信,从而优化能源利用率。本文利用改进的模糊均值(FCM)聚类和灰狼优化(GWO)技术,提出了一种适用于能量变化较大的 WSN 的新型聚类和 CH 选择算法。修改后的 FCM 根据节点的相似性对节点进行划分,而 GWO 则在考虑能量水平、中心性、与 BS 的距离和动态节点分布的基础上,确定每个簇中的 CH。仿真结果表明,与现有算法相比,我们提出的方法具有更高的能效和网络寿命。关键字无线传感器网络、修正模糊 C 平均值算法(MFCM)、灰狼优化器(GWO)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lifespan Enhancement of WSN for IoT - Modified Fuzzy Grey Wolf Optimizer (MFGWO) Approach
Wireless Sensor Networks (WSNs) are gaining prominence for diverse applications, including environmental monitoring and industrial automation. Yet, their energy constraint poses a significant challenge. Clustering, a prevalent technique, optimizes energy utilization by grouping nodes into clusters and appointing a cluster head (CH) to aggregate data and communicate with the base station (BS). This paper presents a novel clustering and CH selection algorithm for a energy varied WSNs, leveraging modified fuzzy c-means (FCM) clustering and Grey Wolf Optimization (GWO). Modified FCM partitions nodes based on their similarity, while GWO identifies CHs in each cluster, considering energy levels, centrality, distance from the BS, and dynamic node distribution. Simulation results demonstrate the superior energy efficiency and network lifetime of our proposed approach compared to existing algorithms. Key Word: Wireless Sensor Networks, Modified Fuzzy C Means algorithm (MFCM), Grey Wolf Optimizer (GWO)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信