R. T. Prabu, Judy Simon, N. Kapileswar, Dasari Naga Vinod, P. K. Polasi, Hazem Hazem Ali Emam
{"title":"基于多泵浦拉曼放大器的光收发系统的四波混合、平均放大自发辐射和通道间距效应","authors":"R. T. Prabu, Judy Simon, N. Kapileswar, Dasari Naga Vinod, P. K. Polasi, Hazem Hazem Ali Emam","doi":"10.1515/joc-2024-0040","DOIUrl":null,"url":null,"abstract":"\n This study has clarified the four-wave mixing, average amplified spontaneous emission, and channel spacing effects on the optical transceiver systems based on multipumped Raman amplifiers. The employed spectral width is applied in the fiber core from 1450 nm to 1650 nm through the subgroups in the fiber link. The optical loss and fiber dispersion effects are demonstrated with the spectral wavelength band with different pumping levels. The optical loss is clarified in relation to different laser pumping levels and different number of links per fiber core channel at 1550 nm. As well as the dispersion factor is demonstrated in relation to different laser pumping levels and different number of links per fiber core channel at 1300 nm. Extended fiber length, amplifier gain, and repeater spacing are clarified with different laser pumping levels and different number of links variations per fiber core channel at 1550 nm. The data rate transmission is studied against different laser pumping levels and different number of links variations per fiber core channel at both 1550 nm and 1300 nm. The optimum fiber coupled power is demonstrated against different laser pumping levels and different number of links variations per fiber core channel at 1550 nm. The fiber coupling efficiency is studied and demonstrated against different laser pumping levels and different number of links variations per fiber core channel at 1550 nm.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four wave mixing, average amplified spontaneous emission, and channel spacing effects on the optical transceiver systems based on multi pumped Raman amplifiers\",\"authors\":\"R. T. Prabu, Judy Simon, N. Kapileswar, Dasari Naga Vinod, P. K. Polasi, Hazem Hazem Ali Emam\",\"doi\":\"10.1515/joc-2024-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study has clarified the four-wave mixing, average amplified spontaneous emission, and channel spacing effects on the optical transceiver systems based on multipumped Raman amplifiers. The employed spectral width is applied in the fiber core from 1450 nm to 1650 nm through the subgroups in the fiber link. The optical loss and fiber dispersion effects are demonstrated with the spectral wavelength band with different pumping levels. The optical loss is clarified in relation to different laser pumping levels and different number of links per fiber core channel at 1550 nm. As well as the dispersion factor is demonstrated in relation to different laser pumping levels and different number of links per fiber core channel at 1300 nm. Extended fiber length, amplifier gain, and repeater spacing are clarified with different laser pumping levels and different number of links variations per fiber core channel at 1550 nm. The data rate transmission is studied against different laser pumping levels and different number of links variations per fiber core channel at both 1550 nm and 1300 nm. The optimum fiber coupled power is demonstrated against different laser pumping levels and different number of links variations per fiber core channel at 1550 nm. The fiber coupling efficiency is studied and demonstrated against different laser pumping levels and different number of links variations per fiber core channel at 1550 nm.\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2024-0040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2024-0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Four wave mixing, average amplified spontaneous emission, and channel spacing effects on the optical transceiver systems based on multi pumped Raman amplifiers
This study has clarified the four-wave mixing, average amplified spontaneous emission, and channel spacing effects on the optical transceiver systems based on multipumped Raman amplifiers. The employed spectral width is applied in the fiber core from 1450 nm to 1650 nm through the subgroups in the fiber link. The optical loss and fiber dispersion effects are demonstrated with the spectral wavelength band with different pumping levels. The optical loss is clarified in relation to different laser pumping levels and different number of links per fiber core channel at 1550 nm. As well as the dispersion factor is demonstrated in relation to different laser pumping levels and different number of links per fiber core channel at 1300 nm. Extended fiber length, amplifier gain, and repeater spacing are clarified with different laser pumping levels and different number of links variations per fiber core channel at 1550 nm. The data rate transmission is studied against different laser pumping levels and different number of links variations per fiber core channel at both 1550 nm and 1300 nm. The optimum fiber coupled power is demonstrated against different laser pumping levels and different number of links variations per fiber core channel at 1550 nm. The fiber coupling efficiency is studied and demonstrated against different laser pumping levels and different number of links variations per fiber core channel at 1550 nm.
期刊介绍:
This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications