模糊公设空间中几乎收缩映射的定点结果

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
R. I. Sabri, Buthainah A. A. Ahmed Ahmed
{"title":"模糊公设空间中几乎收缩映射的定点结果","authors":"R. I. Sabri, Buthainah A. A. Ahmed Ahmed","doi":"10.21123/bsj.2024.9288","DOIUrl":null,"url":null,"abstract":" في بعض المسائل الرياضية والحاسوبية والاقتصادية والنمذجة، يكون وجود حل لمشكلة نظرية أو مشكلة في العالم الحقيقي مرادفًا لوجود نقطة صامدة (Fp) لدالة مناسبة. وبالتالي،  فأن نظرية النقطة الصامدة Fp تلعب دورًا أساسيًا في مجموعة واسعة من السياقات الرياضية والعلمية. تعتبر نظرية النقطة الصامدة Fp  في حد ذاتها مزيجًا مذهلاً مكون من التحليل (التحليل الصرف والتحليل التطبيقي)، والهندسة، والطوبولوجيا. لقد أظهرت السنوات الأخيرة أن نظرية النقطة الصامدة  Fp هي أداة قوية ومفيدة للغاية في دراسة الحالات غير الخطية. تهتم نظريات النقطة الصامدة Fp بدالة f من المجموعة X الى المجموعة  X نفسها والتي في ظل ظروف معينة، فأنها تسمح بوجود نقطة صامدة Fp ، بعبارة اخرى انه بمعنى  لكل نقطة x موجودة في المجموعة X  (x∈X) بحيث أن f(x)=x .  يقدم هذا العمل ويثبت نظرية النقطة الصامدة Fp  لأنواع مختلفة من دوال الانكماش في الفضاء المتري الضبابي     (FM-space) والتي تسمى بدالة الانكماش القريبة ودالة الانكماش الضعيفة القريبة ( Ψ̃ ,Φ̃). في البداية، تم التذكير بمفهوم الفضاء المتري الضبابي(FM-space) وبعض المصطلحات المستخدمة في الإطار الضبابي. ثم بعد ذلك تم اعطاء مفهوم دالة المحاكاة. يتم استخدام مفهوم دالة المحاكاة هذا لتقديم تعريف دالة الانكماش Z̃ القريبة في إطار الفضاء المتري الضبابي. بالإضافة إلى ذلك، لقد تم استخدام هذا المفهوم(دالة الانكماش Z̃ القريبة) لبرهان وجود النقطة الصامدة ووحدانية النقطة الصامدة لهذا النوع من الدوال.ثم بعد ذلك تم تقديم فكرة دالة الانكماش الضعيفة القريبة ( Ψ̃ ,Φ̃)  في إطار الفضاء المتري الضبابي(FM-space) ، بالإضافة إلى تقديم نظرية النقطة الصامدة Fp لهذا النوع من من الدوال. وفي نهاية البحث تم تقديم بعض الأمثلة لدعم النتائج.","PeriodicalId":8687,"journal":{"name":"Baghdad Science Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed Point Results for Almost Contraction Mappings in Fuzzy Metric Space\",\"authors\":\"R. I. Sabri, Buthainah A. A. Ahmed Ahmed\",\"doi\":\"10.21123/bsj.2024.9288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" في بعض المسائل الرياضية والحاسوبية والاقتصادية والنمذجة، يكون وجود حل لمشكلة نظرية أو مشكلة في العالم الحقيقي مرادفًا لوجود نقطة صامدة (Fp) لدالة مناسبة. وبالتالي،  فأن نظرية النقطة الصامدة Fp تلعب دورًا أساسيًا في مجموعة واسعة من السياقات الرياضية والعلمية. تعتبر نظرية النقطة الصامدة Fp  في حد ذاتها مزيجًا مذهلاً مكون من التحليل (التحليل الصرف والتحليل التطبيقي)، والهندسة، والطوبولوجيا. لقد أظهرت السنوات الأخيرة أن نظرية النقطة الصامدة  Fp هي أداة قوية ومفيدة للغاية في دراسة الحالات غير الخطية. تهتم نظريات النقطة الصامدة Fp بدالة f من المجموعة X الى المجموعة  X نفسها والتي في ظل ظروف معينة، فأنها تسمح بوجود نقطة صامدة Fp ، بعبارة اخرى انه بمعنى  لكل نقطة x موجودة في المجموعة X  (x∈X) بحيث أن f(x)=x .  يقدم هذا العمل ويثبت نظرية النقطة الصامدة Fp  لأنواع مختلفة من دوال الانكماش في الفضاء المتري الضبابي     (FM-space) والتي تسمى بدالة الانكماش القريبة ودالة الانكماش الضعيفة القريبة ( Ψ̃ ,Φ̃). في البداية، تم التذكير بمفهوم الفضاء المتري الضبابي(FM-space) وبعض المصطلحات المستخدمة في الإطار الضبابي. ثم بعد ذلك تم اعطاء مفهوم دالة المحاكاة. يتم استخدام مفهوم دالة المحاكاة هذا لتقديم تعريف دالة الانكماش Z̃ القريبة في إطار الفضاء المتري الضبابي. بالإضافة إلى ذلك، لقد تم استخدام هذا المفهوم(دالة الانكماش Z̃ القريبة) لبرهان وجود النقطة الصامدة ووحدانية النقطة الصامدة لهذا النوع من الدوال.ثم بعد ذلك تم تقديم فكرة دالة الانكماش الضعيفة القريبة ( Ψ̃ ,Φ̃)  في إطار الفضاء المتري الضبابي(FM-space) ، بالإضافة إلى تقديم نظرية النقطة الصامدة Fp لهذا النوع من من الدوال. وفي نهاية البحث تم تقديم بعض الأمثلة لدعم النتائج.\",\"PeriodicalId\":8687,\"journal\":{\"name\":\"Baghdad Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baghdad Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21123/bsj.2024.9288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baghdad Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21123/bsj.2024.9288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在某些数学、计算、经济和建模问题中,理论或现实世界问题解决方案的存在与适当函数定点(Fp)的存在同义。因此,Fp 理论在广泛的数学和科学领域发挥着至关重要的作用。Fp 理论本身就是分析(包括纯分析和应用分析)、几何和拓扑学的奇妙结合。近年来的研究表明,Fp 理论是研究非线性情况的一个非常强大和有用的工具。Fp 理论关注的是从集合 X 到集合 X 本身的函数 f,在某些条件下,允许存在一个定点 Fp,换句话说,对于集合 X 中的每一点 x (x∈X),使得 f(x)=x. 本研究介绍并证明了模糊度量空间(FM-space)中不同类型的收缩函数 Fp 定理,即近收缩函数和近弱收缩函数(Ψ̃,Φ̃)。首先,回顾了模糊度量空间(FM-space)的概念和模糊框架中的一些术语。然后,引入模拟函数的概念。这个模拟函数概念用于介绍模糊度量空间框架中邻近 Z̃ 收缩函数的定义。接着,在模糊度量空间(FM-space)中引入了附近弱收缩函数(Ψ̃,Φ̃)的概念,并给出了这类函数的 Fp 定理。论文最后给出了一些例子来支持这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed Point Results for Almost Contraction Mappings in Fuzzy Metric Space
 في بعض المسائل الرياضية والحاسوبية والاقتصادية والنمذجة، يكون وجود حل لمشكلة نظرية أو مشكلة في العالم الحقيقي مرادفًا لوجود نقطة صامدة (Fp) لدالة مناسبة. وبالتالي،  فأن نظرية النقطة الصامدة Fp تلعب دورًا أساسيًا في مجموعة واسعة من السياقات الرياضية والعلمية. تعتبر نظرية النقطة الصامدة Fp  في حد ذاتها مزيجًا مذهلاً مكون من التحليل (التحليل الصرف والتحليل التطبيقي)، والهندسة، والطوبولوجيا. لقد أظهرت السنوات الأخيرة أن نظرية النقطة الصامدة  Fp هي أداة قوية ومفيدة للغاية في دراسة الحالات غير الخطية. تهتم نظريات النقطة الصامدة Fp بدالة f من المجموعة X الى المجموعة  X نفسها والتي في ظل ظروف معينة، فأنها تسمح بوجود نقطة صامدة Fp ، بعبارة اخرى انه بمعنى  لكل نقطة x موجودة في المجموعة X  (x∈X) بحيث أن f(x)=x .  يقدم هذا العمل ويثبت نظرية النقطة الصامدة Fp  لأنواع مختلفة من دوال الانكماش في الفضاء المتري الضبابي     (FM-space) والتي تسمى بدالة الانكماش القريبة ودالة الانكماش الضعيفة القريبة ( Ψ̃ ,Φ̃). في البداية، تم التذكير بمفهوم الفضاء المتري الضبابي(FM-space) وبعض المصطلحات المستخدمة في الإطار الضبابي. ثم بعد ذلك تم اعطاء مفهوم دالة المحاكاة. يتم استخدام مفهوم دالة المحاكاة هذا لتقديم تعريف دالة الانكماش Z̃ القريبة في إطار الفضاء المتري الضبابي. بالإضافة إلى ذلك، لقد تم استخدام هذا المفهوم(دالة الانكماش Z̃ القريبة) لبرهان وجود النقطة الصامدة ووحدانية النقطة الصامدة لهذا النوع من الدوال.ثم بعد ذلك تم تقديم فكرة دالة الانكماش الضعيفة القريبة ( Ψ̃ ,Φ̃)  في إطار الفضاء المتري الضبابي(FM-space) ، بالإضافة إلى تقديم نظرية النقطة الصامدة Fp لهذا النوع من من الدوال. وفي نهاية البحث تم تقديم بعض الأمثلة لدعم النتائج.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Baghdad Science Journal
Baghdad Science Journal MULTIDISCIPLINARY SCIENCES-
CiteScore
2.00
自引率
50.00%
发文量
102
审稿时长
24 weeks
期刊介绍: The journal publishes academic and applied papers dealing with recent topics and scientific concepts. Papers considered for publication in biology, chemistry, computer sciences, physics, and mathematics. Accepted papers will be freely downloaded by professors, researchers, instructors, students, and interested workers. ( Open Access) Published Papers are registered and indexed in the universal libraries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信