{"title":"融合面部信息特征的协同过滤方法","authors":"Shuo Wang, Jing Yang, Yue Yang","doi":"10.3233/jifs-232718","DOIUrl":null,"url":null,"abstract":"Personalized recommendation systems fundamentally assess user preferences as a reflection of their emotional responses to items. Traditional recommendation algorithms, focusing primarily on numerical processing, often overlook emotional factors, leading to reduced accuracy and limited application scenarios. This paper introduces a collaborative filtering recommendation method that integrates features of facial information, derived from emotions extracted from such data. Upon user authorization for camera usage, the system captures facial information features. Owing to the diversity in facial information, deep learning methods classify these features, employing the classification results as emotional labels. This approach calculates the similarity between emotional and item labels, reducing the ambiguity inherent in facial information features. The fusion process of facial information takes into account the user’s emotional state prior to item interaction, which might influence the emotions generated during the interaction. Variance is utilized to measure emotional fluctuations, thereby circumventing misjudgments caused by sustained non-interactive emotions. In selecting the nearest neighboring users, the method considers not only the similarity in user ratings but also in their emotional responses. Tests conducted using the Movielens dataset reveal that the proposed method, modeling facial features, more effectively aligns recommendations with user preferences and significantly enhances the algorithm’s performance.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A collaborative filtering method by fusion of facial information features\",\"authors\":\"Shuo Wang, Jing Yang, Yue Yang\",\"doi\":\"10.3233/jifs-232718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalized recommendation systems fundamentally assess user preferences as a reflection of their emotional responses to items. Traditional recommendation algorithms, focusing primarily on numerical processing, often overlook emotional factors, leading to reduced accuracy and limited application scenarios. This paper introduces a collaborative filtering recommendation method that integrates features of facial information, derived from emotions extracted from such data. Upon user authorization for camera usage, the system captures facial information features. Owing to the diversity in facial information, deep learning methods classify these features, employing the classification results as emotional labels. This approach calculates the similarity between emotional and item labels, reducing the ambiguity inherent in facial information features. The fusion process of facial information takes into account the user’s emotional state prior to item interaction, which might influence the emotions generated during the interaction. Variance is utilized to measure emotional fluctuations, thereby circumventing misjudgments caused by sustained non-interactive emotions. In selecting the nearest neighboring users, the method considers not only the similarity in user ratings but also in their emotional responses. Tests conducted using the Movielens dataset reveal that the proposed method, modeling facial features, more effectively aligns recommendations with user preferences and significantly enhances the algorithm’s performance.\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-232718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-232718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A collaborative filtering method by fusion of facial information features
Personalized recommendation systems fundamentally assess user preferences as a reflection of their emotional responses to items. Traditional recommendation algorithms, focusing primarily on numerical processing, often overlook emotional factors, leading to reduced accuracy and limited application scenarios. This paper introduces a collaborative filtering recommendation method that integrates features of facial information, derived from emotions extracted from such data. Upon user authorization for camera usage, the system captures facial information features. Owing to the diversity in facial information, deep learning methods classify these features, employing the classification results as emotional labels. This approach calculates the similarity between emotional and item labels, reducing the ambiguity inherent in facial information features. The fusion process of facial information takes into account the user’s emotional state prior to item interaction, which might influence the emotions generated during the interaction. Variance is utilized to measure emotional fluctuations, thereby circumventing misjudgments caused by sustained non-interactive emotions. In selecting the nearest neighboring users, the method considers not only the similarity in user ratings but also in their emotional responses. Tests conducted using the Movielens dataset reveal that the proposed method, modeling facial features, more effectively aligns recommendations with user preferences and significantly enhances the algorithm’s performance.