D. Zhang, Qingzheng Ran, Lijie Gong, Xiaowen Chen, Qiyuan Tang, Dezhi Zeng
{"title":"焊后热处理对 X90 管线钢接头耐腐蚀性的影响","authors":"D. Zhang, Qingzheng Ran, Lijie Gong, Xiaowen Chen, Qiyuan Tang, Dezhi Zeng","doi":"10.1515/ijmr-2021-8601","DOIUrl":null,"url":null,"abstract":"\n In order to improve the corrosion resistance of welded joints, X90 pipeline steel joints were subjected to post-weld heat treatment at 610 °C, 640 °C, and 670 °C (holding time was 1 h). Through electrochemical corrosion and full immersion corrosion experiments, the corrosion resistance of welded joints under various conditions was tested, and the surface morphology and corrosion products of the corroded samples were analyzed by scanning electron microscopy and X-ray diffraction analysis. The experimental results show that the corrosion products of X90 pipeline steel welded joints in simulated soil solution mainly include Fe(OH)3, γ-FeOOH, α-Fe2O3, γ-Fe2O3, and a small amount of Fe3O4, FeCl3 and Fe. After heat treatment at 610 °C, the corrosion current density of the parent metal, heat-affected zone, and weld metal of the joint changes from 1.081, 2.889, 2.079 (×10−5 A cm−2) to 0.977, 2.211, 1.810 (×10−5 A cm−2), respectively, the corrosion resistance is improved.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of post-weld heat treatment on corrosion resistance of X90 pipeline steel joints\",\"authors\":\"D. Zhang, Qingzheng Ran, Lijie Gong, Xiaowen Chen, Qiyuan Tang, Dezhi Zeng\",\"doi\":\"10.1515/ijmr-2021-8601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In order to improve the corrosion resistance of welded joints, X90 pipeline steel joints were subjected to post-weld heat treatment at 610 °C, 640 °C, and 670 °C (holding time was 1 h). Through electrochemical corrosion and full immersion corrosion experiments, the corrosion resistance of welded joints under various conditions was tested, and the surface morphology and corrosion products of the corroded samples were analyzed by scanning electron microscopy and X-ray diffraction analysis. The experimental results show that the corrosion products of X90 pipeline steel welded joints in simulated soil solution mainly include Fe(OH)3, γ-FeOOH, α-Fe2O3, γ-Fe2O3, and a small amount of Fe3O4, FeCl3 and Fe. After heat treatment at 610 °C, the corrosion current density of the parent metal, heat-affected zone, and weld metal of the joint changes from 1.081, 2.889, 2.079 (×10−5 A cm−2) to 0.977, 2.211, 1.810 (×10−5 A cm−2), respectively, the corrosion resistance is improved.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/ijmr-2021-8601\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ijmr-2021-8601","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
为了提高焊接接头的耐腐蚀性,对 X90 管线钢接头进行了 610 ℃、640 ℃ 和 670 ℃ 焊后热处理(保温时间为 1 小时)。通过电化学腐蚀和完全浸入腐蚀实验,测试了不同条件下焊接接头的耐腐蚀性,并利用扫描电子显微镜和 X 射线衍射分析法分析了腐蚀样品的表面形貌和腐蚀产物。实验结果表明,X90 管线钢焊接接头在模拟土壤溶液中的腐蚀产物主要包括 Fe(OH)3、γ-FeOOH、α-Fe2O3、γ-Fe2O3 以及少量的 Fe3O4、FeCl3 和 Fe。610 °C 热处理后,接头母体金属、热影响区和焊缝金属的腐蚀电流密度分别从 1.081、2.889、2.079(×10-5 A cm-2)变为 0.977、2.211、1.810(×10-5 A cm-2),耐腐蚀性能得到改善。
Effect of post-weld heat treatment on corrosion resistance of X90 pipeline steel joints
In order to improve the corrosion resistance of welded joints, X90 pipeline steel joints were subjected to post-weld heat treatment at 610 °C, 640 °C, and 670 °C (holding time was 1 h). Through electrochemical corrosion and full immersion corrosion experiments, the corrosion resistance of welded joints under various conditions was tested, and the surface morphology and corrosion products of the corroded samples were analyzed by scanning electron microscopy and X-ray diffraction analysis. The experimental results show that the corrosion products of X90 pipeline steel welded joints in simulated soil solution mainly include Fe(OH)3, γ-FeOOH, α-Fe2O3, γ-Fe2O3, and a small amount of Fe3O4, FeCl3 and Fe. After heat treatment at 610 °C, the corrosion current density of the parent metal, heat-affected zone, and weld metal of the joint changes from 1.081, 2.889, 2.079 (×10−5 A cm−2) to 0.977, 2.211, 1.810 (×10−5 A cm−2), respectively, the corrosion resistance is improved.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.