{"title":"奥氏体不锈钢非对称传导激光微焊接流体力学建模与仿真及其工艺优化研究","authors":"José Luis Velázquez de la Hoz, Kai Cheng","doi":"10.1177/09544054241235839","DOIUrl":null,"url":null,"abstract":"Laser micro-welding is a joining technology utilized across various high-value industries, like medical, automotive, e-mobility, and aerospace. A trial-and-error process to identify welding parameters does not necessarily lead to optimized quality levels. Furthermore, offline non-destructive examination methods often launched to verify welding quality may inadvertently trigger excessive costs and time delays, ultimately failing to guarantee defect-free welds. In response to these challenges, this article introduces an advanced multiscale model designed to unravel the intricate dynamics of hydrodynamics and the overarching physics within laser micro-welding melting pools. Developed using the COMSOL software package, the model adeptly demonstrates how surface tension gradients shape the geometry of welds, thus influencing their quality. This knowledge allows the mapping of welding defects. One of the novelties of the article is to introduce geometric dissimilar welding conditions by simulating an asymmetric edge joint. It shows a study on a new, unstudied way to laser weld with many applications in the field. The model further establishes its utility in design experiments to determine parameter, tolerance, and system design. Moreover, the insights garnered from understanding and controlling these drivers have far-reaching implications for the advancement of subsequent methodological research and the development of in-situ quality control practices by characterizing the welding defects. Finally, the results shows that the discouragingly high computational costs restrict its potential application to support a Digital Twin.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the modeling and simulation of hydrodynamics in asymmetric conduction laser micro-welding of austenitic stainless steel and its process optimization\",\"authors\":\"José Luis Velázquez de la Hoz, Kai Cheng\",\"doi\":\"10.1177/09544054241235839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser micro-welding is a joining technology utilized across various high-value industries, like medical, automotive, e-mobility, and aerospace. A trial-and-error process to identify welding parameters does not necessarily lead to optimized quality levels. Furthermore, offline non-destructive examination methods often launched to verify welding quality may inadvertently trigger excessive costs and time delays, ultimately failing to guarantee defect-free welds. In response to these challenges, this article introduces an advanced multiscale model designed to unravel the intricate dynamics of hydrodynamics and the overarching physics within laser micro-welding melting pools. Developed using the COMSOL software package, the model adeptly demonstrates how surface tension gradients shape the geometry of welds, thus influencing their quality. This knowledge allows the mapping of welding defects. One of the novelties of the article is to introduce geometric dissimilar welding conditions by simulating an asymmetric edge joint. It shows a study on a new, unstudied way to laser weld with many applications in the field. The model further establishes its utility in design experiments to determine parameter, tolerance, and system design. Moreover, the insights garnered from understanding and controlling these drivers have far-reaching implications for the advancement of subsequent methodological research and the development of in-situ quality control practices by characterizing the welding defects. Finally, the results shows that the discouragingly high computational costs restrict its potential application to support a Digital Twin.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054241235839\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241235839","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Investigation on the modeling and simulation of hydrodynamics in asymmetric conduction laser micro-welding of austenitic stainless steel and its process optimization
Laser micro-welding is a joining technology utilized across various high-value industries, like medical, automotive, e-mobility, and aerospace. A trial-and-error process to identify welding parameters does not necessarily lead to optimized quality levels. Furthermore, offline non-destructive examination methods often launched to verify welding quality may inadvertently trigger excessive costs and time delays, ultimately failing to guarantee defect-free welds. In response to these challenges, this article introduces an advanced multiscale model designed to unravel the intricate dynamics of hydrodynamics and the overarching physics within laser micro-welding melting pools. Developed using the COMSOL software package, the model adeptly demonstrates how surface tension gradients shape the geometry of welds, thus influencing their quality. This knowledge allows the mapping of welding defects. One of the novelties of the article is to introduce geometric dissimilar welding conditions by simulating an asymmetric edge joint. It shows a study on a new, unstudied way to laser weld with many applications in the field. The model further establishes its utility in design experiments to determine parameter, tolerance, and system design. Moreover, the insights garnered from understanding and controlling these drivers have far-reaching implications for the advancement of subsequent methodological research and the development of in-situ quality control practices by characterizing the welding defects. Finally, the results shows that the discouragingly high computational costs restrict its potential application to support a Digital Twin.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.