用于乳腺癌检测的 1D-CNN 和机器学习算法混合方法

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
Ahmed Adil Nafea, Manar AL-Mahdawi, K. Alheeti, M. Alsumaidaie, Mohammed M. AL-Ani
{"title":"用于乳腺癌检测的 1D-CNN 和机器学习算法混合方法","authors":"Ahmed Adil Nafea, Manar AL-Mahdawi, K. Alheeti, M. Alsumaidaie, Mohammed M. AL-Ani","doi":"10.21123/bsj.2024.9443","DOIUrl":null,"url":null,"abstract":"يعد سرطان الثدي من المخاوف الصحية ذات الأهمية، ومن الضروري اكتشافه مبكرًا للحصول على علاج فعال. في الآونة الأخيرة، كان هناك اهتمام متزايد باستخدام الذكاء الاصطناعي (AI) للكشف عن سرطان الثدي، مما أظهر نتائج في تعزيز الدقة وتقليل النتائج الإيجابية الخاطئة. ومع ذلك، هناك بعض القيود فيما يتعلق بدقة الكشف. تقدم هذه الدراسة منهجًا هجيناً يستخدم 1D CNN  لاستخراج الميزات ويستخدم خوارزميات التعلم الآلي مثل XGBoost والغابات العشوائية (RF) وأشجار القرار (DT) وآلات ناقلات الدعم (SVM) و أقرب جار (KNN) لتصنيف العينات إما حميدة أو خبيثة تهدف إلى تعزيز الدقة في الكشف. تكشف النتائج التي توصلنا إليها أن خوارزمية XGBoost مع استخراج الميزات (D CNN1) حققت دقة قدرها 98.24% في مجموعة الاختبار. تسلط هذه الدراسة الضوء على جدوى استخدام خوارزميات التعلم الآلي والتعلم العميق في هذه الدراسة تم استخدام مجموعة بيانات سرطان الثدي في ولاية ويسكونسن (WBC)، للكشف عن سرطان الثدي. يبشر نهجنا بالوعد في تسهيل الكشف وتحسين النتائج من خلال توفير أدوات دقيقة وموثوقة لتشخيص سرطان الثدي.","PeriodicalId":8687,"journal":{"name":"Baghdad Science Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Method of 1D-CNN and Machine Learning Algorithms for Breast Cancer Detection\",\"authors\":\"Ahmed Adil Nafea, Manar AL-Mahdawi, K. Alheeti, M. Alsumaidaie, Mohammed M. AL-Ani\",\"doi\":\"10.21123/bsj.2024.9443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"يعد سرطان الثدي من المخاوف الصحية ذات الأهمية، ومن الضروري اكتشافه مبكرًا للحصول على علاج فعال. في الآونة الأخيرة، كان هناك اهتمام متزايد باستخدام الذكاء الاصطناعي (AI) للكشف عن سرطان الثدي، مما أظهر نتائج في تعزيز الدقة وتقليل النتائج الإيجابية الخاطئة. ومع ذلك، هناك بعض القيود فيما يتعلق بدقة الكشف. تقدم هذه الدراسة منهجًا هجيناً يستخدم 1D CNN  لاستخراج الميزات ويستخدم خوارزميات التعلم الآلي مثل XGBoost والغابات العشوائية (RF) وأشجار القرار (DT) وآلات ناقلات الدعم (SVM) و أقرب جار (KNN) لتصنيف العينات إما حميدة أو خبيثة تهدف إلى تعزيز الدقة في الكشف. تكشف النتائج التي توصلنا إليها أن خوارزمية XGBoost مع استخراج الميزات (D CNN1) حققت دقة قدرها 98.24% في مجموعة الاختبار. تسلط هذه الدراسة الضوء على جدوى استخدام خوارزميات التعلم الآلي والتعلم العميق في هذه الدراسة تم استخدام مجموعة بيانات سرطان الثدي في ولاية ويسكونسن (WBC)، للكشف عن سرطان الثدي. يبشر نهجنا بالوعد في تسهيل الكشف وتحسين النتائج من خلال توفير أدوات دقيقة وموثوقة لتشخيص سرطان الثدي.\",\"PeriodicalId\":8687,\"journal\":{\"name\":\"Baghdad Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baghdad Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21123/bsj.2024.9443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baghdad Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21123/bsj.2024.9443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是一个重要的健康问题,早期检测对有效治疗至关重要。最近,人们对使用人工智能(AI)进行乳腺癌检测的兴趣日益浓厚,人工智能在提高准确性和减少误报方面取得了一定的成果。然而,在检测准确性方面还存在一些局限性。本研究提出了一种混合方法,即使用一维 CNN 进行特征提取,并使用 XGBoost、随机森林 (RF)、决策树 (DT)、支持向量机 (SVM) 和最近邻 (KNN) 等机器学习算法对样本进行良性或恶性分类,以提高检测准确率。我们的研究结果表明,带有特征提取的 XGBoost 算法(D CNN1)在测试集中达到了 98.24% 的准确率。本研究强调了使用机器学习和深度学习算法的可行性。 在本研究中,威斯康星州乳腺癌(WBC)数据集被用于乳腺癌检测。我们的方法为乳腺癌诊断提供了准确可靠的工具,有望促进检测和优化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Method of 1D-CNN and Machine Learning Algorithms for Breast Cancer Detection
يعد سرطان الثدي من المخاوف الصحية ذات الأهمية، ومن الضروري اكتشافه مبكرًا للحصول على علاج فعال. في الآونة الأخيرة، كان هناك اهتمام متزايد باستخدام الذكاء الاصطناعي (AI) للكشف عن سرطان الثدي، مما أظهر نتائج في تعزيز الدقة وتقليل النتائج الإيجابية الخاطئة. ومع ذلك، هناك بعض القيود فيما يتعلق بدقة الكشف. تقدم هذه الدراسة منهجًا هجيناً يستخدم 1D CNN  لاستخراج الميزات ويستخدم خوارزميات التعلم الآلي مثل XGBoost والغابات العشوائية (RF) وأشجار القرار (DT) وآلات ناقلات الدعم (SVM) و أقرب جار (KNN) لتصنيف العينات إما حميدة أو خبيثة تهدف إلى تعزيز الدقة في الكشف. تكشف النتائج التي توصلنا إليها أن خوارزمية XGBoost مع استخراج الميزات (D CNN1) حققت دقة قدرها 98.24% في مجموعة الاختبار. تسلط هذه الدراسة الضوء على جدوى استخدام خوارزميات التعلم الآلي والتعلم العميق في هذه الدراسة تم استخدام مجموعة بيانات سرطان الثدي في ولاية ويسكونسن (WBC)، للكشف عن سرطان الثدي. يبشر نهجنا بالوعد في تسهيل الكشف وتحسين النتائج من خلال توفير أدوات دقيقة وموثوقة لتشخيص سرطان الثدي.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Baghdad Science Journal
Baghdad Science Journal MULTIDISCIPLINARY SCIENCES-
CiteScore
2.00
自引率
50.00%
发文量
102
审稿时长
24 weeks
期刊介绍: The journal publishes academic and applied papers dealing with recent topics and scientific concepts. Papers considered for publication in biology, chemistry, computer sciences, physics, and mathematics. Accepted papers will be freely downloaded by professors, researchers, instructors, students, and interested workers. ( Open Access) Published Papers are registered and indexed in the universal libraries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信