每个元素都是一个无元素和三个七元素之和的环

Yanyuan Wang, Xinsong Yang
{"title":"每个元素都是一个无元素和三个七元素之和的环","authors":"Yanyuan Wang, Xinsong Yang","doi":"10.1155/2024/4402496","DOIUrl":null,"url":null,"abstract":"<jats:p>In this article, we define and discuss strongly <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>7</mn></mrow></msub></math></jats:inline-formula> nil-clean rings: every element in a ring is the sum of a nilpotent and three 7-potents that commute with each other. We use the properties of nilpotent and 7-potent to conduct in-depth research and a large number of calculations and obtain a nilpotent formula for the constant <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"><mi>a</mi></math></jats:inline-formula>. Furthermore, we prove that a ring <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"><mi>R</mi></math></jats:inline-formula> is a strongly <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>7</mn></mrow></msub></math></jats:inline-formula> nil-clean ring if and only if <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"><mi>R</mi><mo>=</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>6</mn></mrow></msub></math></jats:inline-formula>, where <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\"><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\"><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\"><msub><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msub></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\"><msub><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msub></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\"><msub><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msub></math></jats:inline-formula>, and <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\"><msub><mrow><mi>R</mi></mrow><mrow><mn>6</mn></mrow></msub></math></jats:inline-formula> are strongly <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\"><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>7</mn></mrow></msub></math></jats:inline-formula> nil-clean rings with <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\"><mn>2</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\"(\" close=\")\" separators=\"|\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\"><mn>3</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\"(\" close=\")\" separators=\"|\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\"><mn>5</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\"(\" close=\")\" separators=\"|\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\"><mn>7</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\"(\" close=\")\" separators=\"|\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\"><mn>13</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\"(\" close=\")\" separators=\"|\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>, and <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\"><mn>19</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\"(\" close=\")\" separators=\"|\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>. The equivalent conditions of strongly <jats:inline-formula><math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\"><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>7</mn></mrow></msub></math></jats:inline-formula> nil-clean rings in some cases are discussed.</jats:p>","PeriodicalId":509297,"journal":{"name":"International Journal of Mathematics and Mathematical Sciences","volume":"22 5‐6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rings in Which Every Element Is a Sum of a Nilpotent and Three 7-Potents\",\"authors\":\"Yanyuan Wang, Xinsong Yang\",\"doi\":\"10.1155/2024/4402496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this article, we define and discuss strongly <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\"><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>7</mn></mrow></msub></math></jats:inline-formula> nil-clean rings: every element in a ring is the sum of a nilpotent and three 7-potents that commute with each other. We use the properties of nilpotent and 7-potent to conduct in-depth research and a large number of calculations and obtain a nilpotent formula for the constant <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\"><mi>a</mi></math></jats:inline-formula>. Furthermore, we prove that a ring <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\"><mi>R</mi></math></jats:inline-formula> is a strongly <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\"><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>7</mn></mrow></msub></math></jats:inline-formula> nil-clean ring if and only if <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\"><mi>R</mi><mo>=</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>6</mn></mrow></msub></math></jats:inline-formula>, where <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msub></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msub></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msub></math></jats:inline-formula>, and <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>6</mn></mrow></msub></math></jats:inline-formula> are strongly <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\"><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>7</mn></mrow></msub></math></jats:inline-formula> nil-clean rings with <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\"><mn>2</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\"><mn>3</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M15\\\"><mn>5</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M16\\\"><mn>7</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>, <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M17\\\"><mn>13</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>, and <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M18\\\"><mn>19</mn><mo>∈</mo><mtext>Nil</mtext><mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></mfenced></math></jats:inline-formula>. The equivalent conditions of strongly <jats:inline-formula><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M19\\\"><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>7</mn></mrow></msub></math></jats:inline-formula> nil-clean rings in some cases are discussed.</jats:p>\",\"PeriodicalId\":509297,\"journal\":{\"name\":\"International Journal of Mathematics and Mathematical Sciences\",\"volume\":\"22 5‐6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4402496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/4402496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们定义并讨论了强 S3,7 无净环:环中的每个元素都是一个无势和三个相互换约的 7 势的和。我们利用零势和七势的性质进行了深入研究和大量计算,得到了常数 a 的零势公式。此外,我们证明了当且仅当 R=R1⊕R2⊕R3⊕R4⊕R5⊕R6 时,环 R 是强 S3,7 无净环,其中 R1, R2、R3、R4、R5 和 R6 是强 S3,7 无净环,其中有 2∈NilR1、3∈NilR2、5∈NilR3、7∈NilR4、13∈NilR5 和 19∈NilR6。讨论了强 S3,7 无净环在某些情况下的等价条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rings in Which Every Element Is a Sum of a Nilpotent and Three 7-Potents
In this article, we define and discuss strongly S3,7 nil-clean rings: every element in a ring is the sum of a nilpotent and three 7-potents that commute with each other. We use the properties of nilpotent and 7-potent to conduct in-depth research and a large number of calculations and obtain a nilpotent formula for the constant a. Furthermore, we prove that a ring R is a strongly S3,7 nil-clean ring if and only if R=R1R2R3R4R5R6, where R1, R2, R3, R4, R5, and R6 are strongly S3,7 nil-clean rings with 2NilR1, 3NilR2, 5NilR3, 7NilR4, 13NilR5, and 19NilR6. The equivalent conditions of strongly S3,7 nil-clean rings in some cases are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信