Hongfei Zhang, D. She, Hu Wang, Yaoming Li, Jin Chen
{"title":"用于旋转机械智能故障诊断的多表示转移对抗网络","authors":"Hongfei Zhang, D. She, Hu Wang, Yaoming Li, Jin Chen","doi":"10.1177/01423312241234000","DOIUrl":null,"url":null,"abstract":"Fault diagnosis of rolling bearings is among the most crucial links in the prognostic and health management of bearings. To solve the problem that cross-domain fault diagnosis cannot be performed due to the distribution differences between different working conditions, a transfer diagnosis method based on multi-representation adversarial neural network is proposed. First, the multi-representation neural network is applied to extract multiscale features. Second, the domain adversarial network is utilized to set the gradient inversion layer and extract the domain invariant features in the multiscale features. In terms of the loss function, the Wasserstein function and cross-entropy loss function are utilized to measure the distance between the source domain and the target domain. The experimental case of rolling bearing supports the effectiveness and superiority of the proposed method.","PeriodicalId":507087,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"6 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-representation transfer adversarial network for intelligent fault diagnosis of rotating machinery\",\"authors\":\"Hongfei Zhang, D. She, Hu Wang, Yaoming Li, Jin Chen\",\"doi\":\"10.1177/01423312241234000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault diagnosis of rolling bearings is among the most crucial links in the prognostic and health management of bearings. To solve the problem that cross-domain fault diagnosis cannot be performed due to the distribution differences between different working conditions, a transfer diagnosis method based on multi-representation adversarial neural network is proposed. First, the multi-representation neural network is applied to extract multiscale features. Second, the domain adversarial network is utilized to set the gradient inversion layer and extract the domain invariant features in the multiscale features. In terms of the loss function, the Wasserstein function and cross-entropy loss function are utilized to measure the distance between the source domain and the target domain. The experimental case of rolling bearing supports the effectiveness and superiority of the proposed method.\",\"PeriodicalId\":507087,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\"6 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312241234000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312241234000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multi-representation transfer adversarial network for intelligent fault diagnosis of rotating machinery
Fault diagnosis of rolling bearings is among the most crucial links in the prognostic and health management of bearings. To solve the problem that cross-domain fault diagnosis cannot be performed due to the distribution differences between different working conditions, a transfer diagnosis method based on multi-representation adversarial neural network is proposed. First, the multi-representation neural network is applied to extract multiscale features. Second, the domain adversarial network is utilized to set the gradient inversion layer and extract the domain invariant features in the multiscale features. In terms of the loss function, the Wasserstein function and cross-entropy loss function are utilized to measure the distance between the source domain and the target domain. The experimental case of rolling bearing supports the effectiveness and superiority of the proposed method.