用于旋转机械智能故障诊断的多表示转移对抗网络

Hongfei Zhang, D. She, Hu Wang, Yaoming Li, Jin Chen
{"title":"用于旋转机械智能故障诊断的多表示转移对抗网络","authors":"Hongfei Zhang, D. She, Hu Wang, Yaoming Li, Jin Chen","doi":"10.1177/01423312241234000","DOIUrl":null,"url":null,"abstract":"Fault diagnosis of rolling bearings is among the most crucial links in the prognostic and health management of bearings. To solve the problem that cross-domain fault diagnosis cannot be performed due to the distribution differences between different working conditions, a transfer diagnosis method based on multi-representation adversarial neural network is proposed. First, the multi-representation neural network is applied to extract multiscale features. Second, the domain adversarial network is utilized to set the gradient inversion layer and extract the domain invariant features in the multiscale features. In terms of the loss function, the Wasserstein function and cross-entropy loss function are utilized to measure the distance between the source domain and the target domain. The experimental case of rolling bearing supports the effectiveness and superiority of the proposed method.","PeriodicalId":507087,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"6 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-representation transfer adversarial network for intelligent fault diagnosis of rotating machinery\",\"authors\":\"Hongfei Zhang, D. She, Hu Wang, Yaoming Li, Jin Chen\",\"doi\":\"10.1177/01423312241234000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault diagnosis of rolling bearings is among the most crucial links in the prognostic and health management of bearings. To solve the problem that cross-domain fault diagnosis cannot be performed due to the distribution differences between different working conditions, a transfer diagnosis method based on multi-representation adversarial neural network is proposed. First, the multi-representation neural network is applied to extract multiscale features. Second, the domain adversarial network is utilized to set the gradient inversion layer and extract the domain invariant features in the multiscale features. In terms of the loss function, the Wasserstein function and cross-entropy loss function are utilized to measure the distance between the source domain and the target domain. The experimental case of rolling bearing supports the effectiveness and superiority of the proposed method.\",\"PeriodicalId\":507087,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\"6 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312241234000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312241234000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

滚动轴承的故障诊断是轴承预报和健康管理中最关键的环节之一。为了解决由于不同工况的分布差异而无法进行跨域故障诊断的问题,本文提出了一种基于多表征对抗神经网络的转移诊断方法。首先,应用多表征神经网络提取多尺度特征。其次,利用域对抗网络设置梯度反演层,提取多尺度特征中的域不变特征。在损失函数方面,利用 Wasserstein 函数和交叉熵损失函数来测量源域和目标域之间的距离。滚动轴承的实验案例证明了所提方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-representation transfer adversarial network for intelligent fault diagnosis of rotating machinery
Fault diagnosis of rolling bearings is among the most crucial links in the prognostic and health management of bearings. To solve the problem that cross-domain fault diagnosis cannot be performed due to the distribution differences between different working conditions, a transfer diagnosis method based on multi-representation adversarial neural network is proposed. First, the multi-representation neural network is applied to extract multiscale features. Second, the domain adversarial network is utilized to set the gradient inversion layer and extract the domain invariant features in the multiscale features. In terms of the loss function, the Wasserstein function and cross-entropy loss function are utilized to measure the distance between the source domain and the target domain. The experimental case of rolling bearing supports the effectiveness and superiority of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信