三个非等谱非线性薛定谔方程的考奇矩阵方法

Alemu Yilma Tefera, Shangshuai Li, Da-jun Zhang
{"title":"三个非等谱非线性薛定谔方程的考奇矩阵方法","authors":"Alemu Yilma Tefera, Shangshuai Li, Da-jun Zhang","doi":"10.1088/1572-9494/ad35b1","DOIUrl":null,"url":null,"abstract":"\n The paper aims to develop a direct approach, namely, the Cauchy matrix approach, to non-isospectral integrable systems. In the Cauchy matrix approach, the Sylvester equation plays an central role, which defines a dressed Cauchy matrix to provide τ functions for the investigated equations. In this paper, using the Cauchy matrix approach, we derive three non-isospectral nonlinear Schrödinger equations and their explicit solutions. These equations are generically related to time-dependent spectral parameter in the Zakharov-Shabat-Ablowitz-Kaup-Newell-Segur spectral problem. Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schrödinger equations through complex reduction. These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cauchy matrix approach to three non-isospectral nonlinear Schrödinger equations\",\"authors\":\"Alemu Yilma Tefera, Shangshuai Li, Da-jun Zhang\",\"doi\":\"10.1088/1572-9494/ad35b1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The paper aims to develop a direct approach, namely, the Cauchy matrix approach, to non-isospectral integrable systems. In the Cauchy matrix approach, the Sylvester equation plays an central role, which defines a dressed Cauchy matrix to provide τ functions for the investigated equations. In this paper, using the Cauchy matrix approach, we derive three non-isospectral nonlinear Schrödinger equations and their explicit solutions. These equations are generically related to time-dependent spectral parameter in the Zakharov-Shabat-Ablowitz-Kaup-Newell-Segur spectral problem. Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schrödinger equations through complex reduction. These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons.\",\"PeriodicalId\":508917,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad35b1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad35b1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在为非等谱可积分系统开发一种直接方法,即考奇矩阵方法。在考希矩阵方法中,西尔维斯特方程起着核心作用,它定义了一个穿戴的考希矩阵,为所研究的方程提供τ函数。本文利用考奇矩阵方法,推导出三个非等谱非线性薛定谔方程及其显式解。这些方程一般与 Zakharov-Shabat-Ablowitz-Kaup-Newell-Segur 光谱问题中的时间相关光谱参数有关。它们的解是从未还原的非等谱非线性薛定谔方程的解中通过复数还原得到的。对这些解进行了分析和说明,以显示孤子动力学中的非等谱效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cauchy matrix approach to three non-isospectral nonlinear Schrödinger equations
The paper aims to develop a direct approach, namely, the Cauchy matrix approach, to non-isospectral integrable systems. In the Cauchy matrix approach, the Sylvester equation plays an central role, which defines a dressed Cauchy matrix to provide τ functions for the investigated equations. In this paper, using the Cauchy matrix approach, we derive three non-isospectral nonlinear Schrödinger equations and their explicit solutions. These equations are generically related to time-dependent spectral parameter in the Zakharov-Shabat-Ablowitz-Kaup-Newell-Segur spectral problem. Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schrödinger equations through complex reduction. These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信