{"title":"新矩阵全态结构的基础方面","authors":"H. Khedhiri, Taher Mkademi","doi":"10.1108/ajms-08-2023-0002","DOIUrl":null,"url":null,"abstract":"<jats:sec><jats:title content-type=\"abstract-subheading\">Purpose</jats:title><jats:p>In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Design/methodology/approach</jats:title><jats:p>We introduce and investigate the complex space <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msub><m:mrow><m:mi mathvariant=\"double-struck\">H</m:mi></m:mrow><m:mrow><m:mi mathvariant=\"double-struck\">C</m:mi></m:mrow></m:msub></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-08-2023-0002001.tif\" /></jats:inline-formula> consisting of all 2 × 2 complex matrices of the form <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mspace width=\"0.28em\" /><m:mi>ξ</m:mi><m:mo>=</m:mo><m:mfenced open=\"(\" close=\")\"><m:mrow><m:mtable class=\"matrix\"><m:mtr><m:mtd columnalign=\"center\"><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>+</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub></m:mtd><m:mtd columnalign=\"center\"><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub><m:mo>+</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mtd></m:mtr><m:mtr><m:mtd columnalign=\"center\"><m:mo>−</m:mo><m:msub><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>z</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub><m:mo>−</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>w</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mtd><m:mtd columnalign=\"center\"><m:msub><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>z</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>+</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>w</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub></m:mtd></m:mtr></m:mtable></m:mrow></m:mfenced></m:math>, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mo>(</m:mo><m:mrow><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>,</m:mo><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>,</m:mo><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub><m:mo>,</m:mo><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mrow><m:mo>)</m:mo></m:mrow><m:mo>∈</m:mo><m:msup><m:mrow><m:mi mathvariant=\"double-struck\">C</m:mi></m:mrow><m:mrow><m:mn>4</m:mn></m:mrow></m:msup></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-08-2023-0002002.tif\" /></jats:inline-formula>.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Findings</jats:title><jats:p>We develop on <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msub><m:mrow><m:mi mathvariant=\"double-struck\">H</m:mi></m:mrow><m:mrow><m:mi mathvariant=\"double-struck\">C</m:mi></m:mrow></m:msub></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-08-2023-0002003.tif\" /></jats:inline-formula> a new matrix holomorphic structure for which we provide the fundamental operational calculus properties.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Originality/value</jats:title><jats:p>We give sufficient and necessary conditions in terms of Cauchy–Riemann type quaternionic differential equations for holomorphicity of a function of one complex matrix variable <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mi>ξ</m:mi><m:mo>∈</m:mo><m:msub><m:mrow><m:mi mathvariant=\"double-struck\">H</m:mi></m:mrow><m:mrow><m:mi mathvariant=\"double-struck\">C</m:mi></m:mrow></m:msub></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-08-2023-0002004.tif\" /></jats:inline-formula>. In particular, we show that we have a lot of holomorphic functions of one matrix quaternion variable.</jats:p></jats:sec>","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":"86 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foundational aspects of a new matrix holomorphic structure\",\"authors\":\"H. Khedhiri, Taher Mkademi\",\"doi\":\"10.1108/ajms-08-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Purpose</jats:title><jats:p>In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.</jats:p></jats:sec><jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Design/methodology/approach</jats:title><jats:p>We introduce and investigate the complex space <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:msub><m:mrow><m:mi mathvariant=\\\"double-struck\\\">H</m:mi></m:mrow><m:mrow><m:mi mathvariant=\\\"double-struck\\\">C</m:mi></m:mrow></m:msub></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-08-2023-0002001.tif\\\" /></jats:inline-formula> consisting of all 2 × 2 complex matrices of the form <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mspace width=\\\"0.28em\\\" /><m:mi>ξ</m:mi><m:mo>=</m:mo><m:mfenced open=\\\"(\\\" close=\\\")\\\"><m:mrow><m:mtable class=\\\"matrix\\\"><m:mtr><m:mtd columnalign=\\\"center\\\"><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>+</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub></m:mtd><m:mtd columnalign=\\\"center\\\"><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub><m:mo>+</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mtd></m:mtr><m:mtr><m:mtd columnalign=\\\"center\\\"><m:mo>−</m:mo><m:msub><m:mrow><m:mover accent=\\\"true\\\"><m:mrow><m:mi>z</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub><m:mo>−</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mover accent=\\\"true\\\"><m:mrow><m:mi>w</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mtd><m:mtd columnalign=\\\"center\\\"><m:msub><m:mrow><m:mover accent=\\\"true\\\"><m:mrow><m:mi>z</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>+</m:mo><m:mi>i</m:mi><m:msub><m:mrow><m:mover accent=\\\"true\\\"><m:mrow><m:mi>w</m:mi></m:mrow><m:mo>‾</m:mo></m:mover></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub></m:mtd></m:mtr></m:mtable></m:mrow></m:mfenced></m:math>, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mrow><m:mo>(</m:mo><m:mrow><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>,</m:mo><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo>,</m:mo><m:msub><m:mrow><m:mi>z</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub><m:mo>,</m:mo><m:msub><m:mrow><m:mi>w</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mrow><m:mo>)</m:mo></m:mrow><m:mo>∈</m:mo><m:msup><m:mrow><m:mi mathvariant=\\\"double-struck\\\">C</m:mi></m:mrow><m:mrow><m:mn>4</m:mn></m:mrow></m:msup></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-08-2023-0002002.tif\\\" /></jats:inline-formula>.</jats:p></jats:sec><jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Findings</jats:title><jats:p>We develop on <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:msub><m:mrow><m:mi mathvariant=\\\"double-struck\\\">H</m:mi></m:mrow><m:mrow><m:mi mathvariant=\\\"double-struck\\\">C</m:mi></m:mrow></m:msub></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-08-2023-0002003.tif\\\" /></jats:inline-formula> a new matrix holomorphic structure for which we provide the fundamental operational calculus properties.</jats:p></jats:sec><jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Originality/value</jats:title><jats:p>We give sufficient and necessary conditions in terms of Cauchy–Riemann type quaternionic differential equations for holomorphicity of a function of one complex matrix variable <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mi>ξ</m:mi><m:mo>∈</m:mo><m:msub><m:mrow><m:mi mathvariant=\\\"double-struck\\\">H</m:mi></m:mrow><m:mrow><m:mi mathvariant=\\\"double-struck\\\">C</m:mi></m:mrow></m:msub></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-08-2023-0002004.tif\\\" /></jats:inline-formula>. In particular, we show that we have a lot of holomorphic functions of one matrix quaternion variable.</jats:p></jats:sec>\",\"PeriodicalId\":36840,\"journal\":{\"name\":\"Arab Journal of Mathematical Sciences\",\"volume\":\"86 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ajms-08-2023-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-08-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
目的本文讨论复矩阵四元数(双四元数),并涉及数学复矩阵分析中的一些抽象方法。设计/方法/途径我们引入并研究由所有形式为ξ=z1+w1z2+w2-z‾2-w2-z‾1+w2-z‾1+w2-1, (z1,w1,z2,w2)∈C4的 2 × 2 复矩阵组成的复空间 HC。发现我们在 HC 上发展了一种新的矩阵全纯结构,并为其提供了基本的运算微积分性质。原创性/价值我们用考奇-黎曼型四元微分方程给出了一个复矩阵变量的函数ξ∈HC 的全纯性的充分和必要条件。特别是,我们证明我们有很多一个矩阵四元变量的全态函数。
Foundational aspects of a new matrix holomorphic structure
PurposeIn this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.Design/methodology/approachWe introduce and investigate the complex space HC consisting of all 2 × 2 complex matrices of the form ξ=z1+iw1z2+iw2−z‾2−iw‾2z‾1+iw‾1, (z1,w1,z2,w2)∈C4.FindingsWe develop on HC a new matrix holomorphic structure for which we provide the fundamental operational calculus properties.Originality/valueWe give sufficient and necessary conditions in terms of Cauchy–Riemann type quaternionic differential equations for holomorphicity of a function of one complex matrix variable ξ∈HC. In particular, we show that we have a lot of holomorphic functions of one matrix quaternion variable.