时空孤子区域中具有高阶离散谱的萨萨-萨摩方程:通过混合∂-黎曼-希尔伯特问题解决孤子问题

Minghe Zhang, Zhen-Ya Yan
{"title":"时空孤子区域中具有高阶离散谱的萨萨-萨摩方程:通过混合∂-黎曼-希尔伯特问题解决孤子问题","authors":"Minghe Zhang, Zhen-Ya Yan","doi":"10.1088/1572-9494/ad361b","DOIUrl":null,"url":null,"abstract":"\n In this paper, we investigate the Cauchy problem of the Sasa-Satsuma (SS) equation with initial data belonging to the Schwartz space. The SS equation is one of integrable higher-order extensions of the nonlinear Schrödinger equation and admits a 3 × 3 Lax representation. With the aid of the ∂-nonlinear steepest descent method of the mixed¯∂-Riemann-Hilbert problem, we give the soliton resolution and long-time asymptotics for the Cauchy problem of the Sasa-Satsuma equation with the existence of second-order discrete spectra in the space-time solitonic regions.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Sasa-Satsuma equation with high-order discrete spectra in space-time solitonic regions: soliton resolution via mixed ∂-Riemann-Hilbert problem\",\"authors\":\"Minghe Zhang, Zhen-Ya Yan\",\"doi\":\"10.1088/1572-9494/ad361b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we investigate the Cauchy problem of the Sasa-Satsuma (SS) equation with initial data belonging to the Schwartz space. The SS equation is one of integrable higher-order extensions of the nonlinear Schrödinger equation and admits a 3 × 3 Lax representation. With the aid of the ∂-nonlinear steepest descent method of the mixed¯∂-Riemann-Hilbert problem, we give the soliton resolution and long-time asymptotics for the Cauchy problem of the Sasa-Satsuma equation with the existence of second-order discrete spectra in the space-time solitonic regions.\",\"PeriodicalId\":508917,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad361b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad361b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了初始数据属于施瓦茨空间的萨萨(Sasa-Satsuma,SS)方程的考奇问题。SS 方程是非线性薛定谔方程的可积分高阶扩展之一,具有 3 × 3 Lax 表示。借助混合'∂-Riemann-Hilbert 问题的∂-非线性最陡下降方法,我们给出了 Sasa-Satsuma 方程的 Cauchy 问题的孤子解析和长时渐近线,并且在时空孤子区域存在二阶离散谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Sasa-Satsuma equation with high-order discrete spectra in space-time solitonic regions: soliton resolution via mixed ∂-Riemann-Hilbert problem
In this paper, we investigate the Cauchy problem of the Sasa-Satsuma (SS) equation with initial data belonging to the Schwartz space. The SS equation is one of integrable higher-order extensions of the nonlinear Schrödinger equation and admits a 3 × 3 Lax representation. With the aid of the ∂-nonlinear steepest descent method of the mixed¯∂-Riemann-Hilbert problem, we give the soliton resolution and long-time asymptotics for the Cauchy problem of the Sasa-Satsuma equation with the existence of second-order discrete spectra in the space-time solitonic regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信