{"title":"利用电阻率法对盐碱土的解冻行为进行实验研究","authors":"Cihai Chen, Zhilong Yang, Yaping Deng, Haichun Ma, Jiazhong Qian","doi":"10.1093/jge/gxae037","DOIUrl":null,"url":null,"abstract":"\n Electrical resistivity method has been widely used to study permafrost and to monitor the process of freezing-thawing. However, a thorough understanding of the mechanism of electrical response during thawing is missing. In this study, we investigated the thawing behavior of saline soils in the temperature range ∼-10 to 15 °C considering the effects of soil type and salinity. A total of nine experiments were performed with three soil types (silica sand, sandy soil and silt) and three salinities (0.01 S/m, 0.1 S/m and 1 S/m). The results show that resistivity variations with temperature can be divided into three stages. In Stage I, tortuosity and unfrozen water content play major roles in the decrease of resistivity. In Stage Ⅱ, which is an isothermal or near isothermal process, resistivity still decreases slightly due to the thawing of residual ice and pore water movement. In Stage III, ionic mobility plays an important impact on decreasing resistivity. In addition, the isothermal process is found to only occur in silica sand which can be explained by latent heat effect. Exponential and linear models linking temperature with resistivity are used to fit the experimental data in Stage I and Stage III. The fitting parameter in different models shows great correlation with soil type and salinity. Furthermore, unfrozen water content below 0 °C is also estimated and uncertainty of estimation is analyzed.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of thawing behavior of saline soils using resistivity method\",\"authors\":\"Cihai Chen, Zhilong Yang, Yaping Deng, Haichun Ma, Jiazhong Qian\",\"doi\":\"10.1093/jge/gxae037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Electrical resistivity method has been widely used to study permafrost and to monitor the process of freezing-thawing. However, a thorough understanding of the mechanism of electrical response during thawing is missing. In this study, we investigated the thawing behavior of saline soils in the temperature range ∼-10 to 15 °C considering the effects of soil type and salinity. A total of nine experiments were performed with three soil types (silica sand, sandy soil and silt) and three salinities (0.01 S/m, 0.1 S/m and 1 S/m). The results show that resistivity variations with temperature can be divided into three stages. In Stage I, tortuosity and unfrozen water content play major roles in the decrease of resistivity. In Stage Ⅱ, which is an isothermal or near isothermal process, resistivity still decreases slightly due to the thawing of residual ice and pore water movement. In Stage III, ionic mobility plays an important impact on decreasing resistivity. In addition, the isothermal process is found to only occur in silica sand which can be explained by latent heat effect. Exponential and linear models linking temperature with resistivity are used to fit the experimental data in Stage I and Stage III. The fitting parameter in different models shows great correlation with soil type and salinity. Furthermore, unfrozen water content below 0 °C is also estimated and uncertainty of estimation is analyzed.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxae037\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae037","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
电阻率法已被广泛用于研究冻土和监测冻融过程。然而,人们对解冻过程中的电反应机制还缺乏透彻的了解。在本研究中,我们考虑了土壤类型和盐度的影响,研究了盐碱土在温度范围 ∼-10 至 15 ° C 的解冻行为。在三种土壤类型(硅砂、砂土和淤泥)和三种盐度(0.01 S/m、0.1 S/m 和 1 S/m)下共进行了九次实验。结果表明,电阻率随温度的变化可分为三个阶段。在第Ⅰ阶段,迂回度和不冻水含量对电阻率的下降起主要作用。在第Ⅱ阶段,即等温或接近等温的过程中,由于残冰解冻和孔隙水运动,电阻率仍会略有下降。在第Ⅲ阶段,离子迁移率对电阻率的下降有重要影响。此外,等温过程只发生在硅砂中,这可以用潜热效应来解释。温度与电阻率之间的指数模型和线性模型被用来拟合第一阶段和第三阶段的实验数据。不同模型的拟合参数与土壤类型和盐度有很大关系。此外,还估算了 0 °C 以下的不冻水含量,并分析了估算的不确定性。
Experimental investigation of thawing behavior of saline soils using resistivity method
Electrical resistivity method has been widely used to study permafrost and to monitor the process of freezing-thawing. However, a thorough understanding of the mechanism of electrical response during thawing is missing. In this study, we investigated the thawing behavior of saline soils in the temperature range ∼-10 to 15 °C considering the effects of soil type and salinity. A total of nine experiments were performed with three soil types (silica sand, sandy soil and silt) and three salinities (0.01 S/m, 0.1 S/m and 1 S/m). The results show that resistivity variations with temperature can be divided into three stages. In Stage I, tortuosity and unfrozen water content play major roles in the decrease of resistivity. In Stage Ⅱ, which is an isothermal or near isothermal process, resistivity still decreases slightly due to the thawing of residual ice and pore water movement. In Stage III, ionic mobility plays an important impact on decreasing resistivity. In addition, the isothermal process is found to only occur in silica sand which can be explained by latent heat effect. Exponential and linear models linking temperature with resistivity are used to fit the experimental data in Stage I and Stage III. The fitting parameter in different models shows great correlation with soil type and salinity. Furthermore, unfrozen water content below 0 °C is also estimated and uncertainty of estimation is analyzed.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.