通过局部作用和相关映射充当列三中心子的冯-诺依曼布拉上的加法映射

IF 0.6 Q3 MATHEMATICS
Behrooz Fadaee, Hoger Ghahramani
{"title":"通过局部作用和相关映射充当列三中心子的冯-诺依曼布拉上的加法映射","authors":"Behrooz Fadaee,&nbsp;Hoger Ghahramani","doi":"10.1007/s44146-024-00123-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\( {\\mathcal {M}} \\)</span> be an arbitrary von Neumann algebra, and <span>\\( \\phi : {\\mathcal {M}} \\rightarrow {\\mathcal {M}} \\)</span> be an additive map. We show that <span>\\(\\phi \\)</span> satisfies </p><div><div><span>$$\\begin{aligned} \\phi ([ [A, B], C ]) = [ [\\phi (A), B], C ] = [ [ A, \\phi (B) ], C ] \\end{aligned}$$</span></div></div><p>for all <span>\\(A,B, C \\in \\mathcal {M}\\)</span> with <span>\\(AB=0\\)</span> if and only if <span>\\( \\phi (A) = W A + \\xi (A) \\)</span> for any <span>\\( A \\in {\\mathcal {M}} \\)</span>, where <span>\\( W \\in {\\textrm{Z}}( {\\mathcal {M}} ) \\)</span> and <span>\\( \\xi : {\\mathcal {M}} \\rightarrow {\\textrm{Z}}({\\mathcal {M}} ) \\)</span> is an additive mapping such that <span>\\(\\xi ([[A, B ], C] )=0\\)</span> for any <span>\\(A,B, C \\in \\mathcal {M}\\)</span> with <span>\\(AB=0\\)</span>. Then we present various applications of this result to determine other types of additive mappings on von Neumann algebras such as Lie triple centralizers, Lie centralizers, generalized Lie triple derivations at zero products, generalized Lie derivations, Jordan centralizers and Jordan generalized derivations. Some of our results are generalizations of some previously known results.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"195 - 212"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive mappings on von Neumann algebras acting as Lie triple centralizer via local actions and related mappings\",\"authors\":\"Behrooz Fadaee,&nbsp;Hoger Ghahramani\",\"doi\":\"10.1007/s44146-024-00123-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\( {\\\\mathcal {M}} \\\\)</span> be an arbitrary von Neumann algebra, and <span>\\\\( \\\\phi : {\\\\mathcal {M}} \\\\rightarrow {\\\\mathcal {M}} \\\\)</span> be an additive map. We show that <span>\\\\(\\\\phi \\\\)</span> satisfies </p><div><div><span>$$\\\\begin{aligned} \\\\phi ([ [A, B], C ]) = [ [\\\\phi (A), B], C ] = [ [ A, \\\\phi (B) ], C ] \\\\end{aligned}$$</span></div></div><p>for all <span>\\\\(A,B, C \\\\in \\\\mathcal {M}\\\\)</span> with <span>\\\\(AB=0\\\\)</span> if and only if <span>\\\\( \\\\phi (A) = W A + \\\\xi (A) \\\\)</span> for any <span>\\\\( A \\\\in {\\\\mathcal {M}} \\\\)</span>, where <span>\\\\( W \\\\in {\\\\textrm{Z}}( {\\\\mathcal {M}} ) \\\\)</span> and <span>\\\\( \\\\xi : {\\\\mathcal {M}} \\\\rightarrow {\\\\textrm{Z}}({\\\\mathcal {M}} ) \\\\)</span> is an additive mapping such that <span>\\\\(\\\\xi ([[A, B ], C] )=0\\\\)</span> for any <span>\\\\(A,B, C \\\\in \\\\mathcal {M}\\\\)</span> with <span>\\\\(AB=0\\\\)</span>. Then we present various applications of this result to determine other types of additive mappings on von Neumann algebras such as Lie triple centralizers, Lie centralizers, generalized Lie triple derivations at zero products, generalized Lie derivations, Jordan centralizers and Jordan generalized derivations. Some of our results are generalizations of some previously known results.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"91 1-2\",\"pages\":\"195 - 212\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-024-00123-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00123-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \( {\mathcal {M}} \) 是一个任意的冯·诺伊曼代数 \( \phi : {\mathcal {M}} \rightarrow {\mathcal {M}} \) 是一个加性映射。我们证明了 \(\phi \) 满足 $$\begin{aligned} \phi ([ [A, B], C ]) = [ [\phi (A), B], C ] = [ [ A, \phi (B) ], C ] \end{aligned}$$对所有人 \(A,B, C \in \mathcal {M}\) 有 \(AB=0\) 当且仅当 \( \phi (A) = W A + \xi (A) \) 对于任何 \( A \in {\mathcal {M}} \),其中 \( W \in {\textrm{Z}}( {\mathcal {M}} ) \) 和 \( \xi : {\mathcal {M}} \rightarrow {\textrm{Z}}({\mathcal {M}} ) \) 加性映射是这样的吗 \(\xi ([[A, B ], C] )=0\) 对于任何 \(A,B, C \in \mathcal {M}\) 有 \(AB=0\)。然后,我们给出了该结果的各种应用,以确定von Neumann代数上的其他类型的可加映射,如Lie三重中心子、Lie中心子、零积处的广义Lie三重导数、广义Lie导数、Jordan中心子和Jordan广义导数。我们的一些结果是对一些已知结果的概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additive mappings on von Neumann algebras acting as Lie triple centralizer via local actions and related mappings

Let \( {\mathcal {M}} \) be an arbitrary von Neumann algebra, and \( \phi : {\mathcal {M}} \rightarrow {\mathcal {M}} \) be an additive map. We show that \(\phi \) satisfies

$$\begin{aligned} \phi ([ [A, B], C ]) = [ [\phi (A), B], C ] = [ [ A, \phi (B) ], C ] \end{aligned}$$

for all \(A,B, C \in \mathcal {M}\) with \(AB=0\) if and only if \( \phi (A) = W A + \xi (A) \) for any \( A \in {\mathcal {M}} \), where \( W \in {\textrm{Z}}( {\mathcal {M}} ) \) and \( \xi : {\mathcal {M}} \rightarrow {\textrm{Z}}({\mathcal {M}} ) \) is an additive mapping such that \(\xi ([[A, B ], C] )=0\) for any \(A,B, C \in \mathcal {M}\) with \(AB=0\). Then we present various applications of this result to determine other types of additive mappings on von Neumann algebras such as Lie triple centralizers, Lie centralizers, generalized Lie triple derivations at zero products, generalized Lie derivations, Jordan centralizers and Jordan generalized derivations. Some of our results are generalizations of some previously known results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信