{"title":"通过局部作用和相关映射充当列三中心子的冯-诺依曼布拉上的加法映射","authors":"Behrooz Fadaee, Hoger Ghahramani","doi":"10.1007/s44146-024-00123-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\( {\\mathcal {M}} \\)</span> be an arbitrary von Neumann algebra, and <span>\\( \\phi : {\\mathcal {M}} \\rightarrow {\\mathcal {M}} \\)</span> be an additive map. We show that <span>\\(\\phi \\)</span> satisfies </p><div><div><span>$$\\begin{aligned} \\phi ([ [A, B], C ]) = [ [\\phi (A), B], C ] = [ [ A, \\phi (B) ], C ] \\end{aligned}$$</span></div></div><p>for all <span>\\(A,B, C \\in \\mathcal {M}\\)</span> with <span>\\(AB=0\\)</span> if and only if <span>\\( \\phi (A) = W A + \\xi (A) \\)</span> for any <span>\\( A \\in {\\mathcal {M}} \\)</span>, where <span>\\( W \\in {\\textrm{Z}}( {\\mathcal {M}} ) \\)</span> and <span>\\( \\xi : {\\mathcal {M}} \\rightarrow {\\textrm{Z}}({\\mathcal {M}} ) \\)</span> is an additive mapping such that <span>\\(\\xi ([[A, B ], C] )=0\\)</span> for any <span>\\(A,B, C \\in \\mathcal {M}\\)</span> with <span>\\(AB=0\\)</span>. Then we present various applications of this result to determine other types of additive mappings on von Neumann algebras such as Lie triple centralizers, Lie centralizers, generalized Lie triple derivations at zero products, generalized Lie derivations, Jordan centralizers and Jordan generalized derivations. Some of our results are generalizations of some previously known results.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"195 - 212"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive mappings on von Neumann algebras acting as Lie triple centralizer via local actions and related mappings\",\"authors\":\"Behrooz Fadaee, Hoger Ghahramani\",\"doi\":\"10.1007/s44146-024-00123-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\( {\\\\mathcal {M}} \\\\)</span> be an arbitrary von Neumann algebra, and <span>\\\\( \\\\phi : {\\\\mathcal {M}} \\\\rightarrow {\\\\mathcal {M}} \\\\)</span> be an additive map. We show that <span>\\\\(\\\\phi \\\\)</span> satisfies </p><div><div><span>$$\\\\begin{aligned} \\\\phi ([ [A, B], C ]) = [ [\\\\phi (A), B], C ] = [ [ A, \\\\phi (B) ], C ] \\\\end{aligned}$$</span></div></div><p>for all <span>\\\\(A,B, C \\\\in \\\\mathcal {M}\\\\)</span> with <span>\\\\(AB=0\\\\)</span> if and only if <span>\\\\( \\\\phi (A) = W A + \\\\xi (A) \\\\)</span> for any <span>\\\\( A \\\\in {\\\\mathcal {M}} \\\\)</span>, where <span>\\\\( W \\\\in {\\\\textrm{Z}}( {\\\\mathcal {M}} ) \\\\)</span> and <span>\\\\( \\\\xi : {\\\\mathcal {M}} \\\\rightarrow {\\\\textrm{Z}}({\\\\mathcal {M}} ) \\\\)</span> is an additive mapping such that <span>\\\\(\\\\xi ([[A, B ], C] )=0\\\\)</span> for any <span>\\\\(A,B, C \\\\in \\\\mathcal {M}\\\\)</span> with <span>\\\\(AB=0\\\\)</span>. Then we present various applications of this result to determine other types of additive mappings on von Neumann algebras such as Lie triple centralizers, Lie centralizers, generalized Lie triple derivations at zero products, generalized Lie derivations, Jordan centralizers and Jordan generalized derivations. Some of our results are generalizations of some previously known results.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"91 1-2\",\"pages\":\"195 - 212\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-024-00123-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00123-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 \( {\mathcal {M}} \) 是一个任意的冯·诺伊曼代数 \( \phi : {\mathcal {M}} \rightarrow {\mathcal {M}} \) 是一个加性映射。我们证明了 \(\phi \) 满足 $$\begin{aligned} \phi ([ [A, B], C ]) = [ [\phi (A), B], C ] = [ [ A, \phi (B) ], C ] \end{aligned}$$对所有人 \(A,B, C \in \mathcal {M}\) 有 \(AB=0\) 当且仅当 \( \phi (A) = W A + \xi (A) \) 对于任何 \( A \in {\mathcal {M}} \),其中 \( W \in {\textrm{Z}}( {\mathcal {M}} ) \) 和 \( \xi : {\mathcal {M}} \rightarrow {\textrm{Z}}({\mathcal {M}} ) \) 加性映射是这样的吗 \(\xi ([[A, B ], C] )=0\) 对于任何 \(A,B, C \in \mathcal {M}\) 有 \(AB=0\)。然后,我们给出了该结果的各种应用,以确定von Neumann代数上的其他类型的可加映射,如Lie三重中心子、Lie中心子、零积处的广义Lie三重导数、广义Lie导数、Jordan中心子和Jordan广义导数。我们的一些结果是对一些已知结果的概括。
Additive mappings on von Neumann algebras acting as Lie triple centralizer via local actions and related mappings
Let \( {\mathcal {M}} \) be an arbitrary von Neumann algebra, and \( \phi : {\mathcal {M}} \rightarrow {\mathcal {M}} \) be an additive map. We show that \(\phi \) satisfies
$$\begin{aligned} \phi ([ [A, B], C ]) = [ [\phi (A), B], C ] = [ [ A, \phi (B) ], C ] \end{aligned}$$
for all \(A,B, C \in \mathcal {M}\) with \(AB=0\) if and only if \( \phi (A) = W A + \xi (A) \) for any \( A \in {\mathcal {M}} \), where \( W \in {\textrm{Z}}( {\mathcal {M}} ) \) and \( \xi : {\mathcal {M}} \rightarrow {\textrm{Z}}({\mathcal {M}} ) \) is an additive mapping such that \(\xi ([[A, B ], C] )=0\) for any \(A,B, C \in \mathcal {M}\) with \(AB=0\). Then we present various applications of this result to determine other types of additive mappings on von Neumann algebras such as Lie triple centralizers, Lie centralizers, generalized Lie triple derivations at zero products, generalized Lie derivations, Jordan centralizers and Jordan generalized derivations. Some of our results are generalizations of some previously known results.