{"title":"用新同调扰动法解析一维凯勒-西格尔方程","authors":"Ali Slimani, Sadek Lakhlifa, A. Guesmia","doi":"10.37256/cm.5120242604","DOIUrl":null,"url":null,"abstract":"For solving a system of nonlinear partial differential equations (PDE) emerging in an attractor one-dimensional chemotaxis model, we used a relatively new analytical method called the new modified homotopy perturbation method (NMHPM). We use NMHPM for solving one-dimensional Keller-Segel models for different types. Some properties show biologically acceptable dependency on parameter values, and numerical solutions are provided. NMHPM’s stability and reduced computing time provide it with a broader range of applications. The algorithm provides analytical approximations for different types of Keller-Segel equations. Some numerical illustrations are given to show the efficiency of the algorithm.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Solution of One-Dimensional Keller-Segel Equations via New Homotopy Perturbation Method\",\"authors\":\"Ali Slimani, Sadek Lakhlifa, A. Guesmia\",\"doi\":\"10.37256/cm.5120242604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For solving a system of nonlinear partial differential equations (PDE) emerging in an attractor one-dimensional chemotaxis model, we used a relatively new analytical method called the new modified homotopy perturbation method (NMHPM). We use NMHPM for solving one-dimensional Keller-Segel models for different types. Some properties show biologically acceptable dependency on parameter values, and numerical solutions are provided. NMHPM’s stability and reduced computing time provide it with a broader range of applications. The algorithm provides analytical approximations for different types of Keller-Segel equations. Some numerical illustrations are given to show the efficiency of the algorithm.\",\"PeriodicalId\":504505,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.5120242604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120242604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analytical Solution of One-Dimensional Keller-Segel Equations via New Homotopy Perturbation Method
For solving a system of nonlinear partial differential equations (PDE) emerging in an attractor one-dimensional chemotaxis model, we used a relatively new analytical method called the new modified homotopy perturbation method (NMHPM). We use NMHPM for solving one-dimensional Keller-Segel models for different types. Some properties show biologically acceptable dependency on parameter values, and numerical solutions are provided. NMHPM’s stability and reduced computing time provide it with a broader range of applications. The algorithm provides analytical approximations for different types of Keller-Segel equations. Some numerical illustrations are given to show the efficiency of the algorithm.