{"title":"堪萨斯河硝酸盐代用模型的多元学习视角","authors":"Nicholas Tufillaro","doi":"10.2166/wpt.2024.068","DOIUrl":null,"url":null,"abstract":"\n A non-linear surrogate model of nitrate concentration in the Kansas River (USA) is described. The model is an (almost) Piece-wise Linear response surface that provides a mean field approximation to the dynamics of the measured data for nitrate plus nitrite (target product) correlations to turbidity and chlorophyll-a concentrations (input variables). The method extends the United States Geological Survey’s linear procedures for surrogate data modeling allowing for better approximations for river systems exhibiting algal blooms due to nutrient-rich source waters. The model and visualization procedures illustrated in the Kansas River example should be generally applicable to many medium-size rivers in agricultural regions.","PeriodicalId":510255,"journal":{"name":"Water Practice & Technology","volume":" 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A manifold learning perspective on surrogate modeling of nitrates in the Kansas River\",\"authors\":\"Nicholas Tufillaro\",\"doi\":\"10.2166/wpt.2024.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A non-linear surrogate model of nitrate concentration in the Kansas River (USA) is described. The model is an (almost) Piece-wise Linear response surface that provides a mean field approximation to the dynamics of the measured data for nitrate plus nitrite (target product) correlations to turbidity and chlorophyll-a concentrations (input variables). The method extends the United States Geological Survey’s linear procedures for surrogate data modeling allowing for better approximations for river systems exhibiting algal blooms due to nutrient-rich source waters. The model and visualization procedures illustrated in the Kansas River example should be generally applicable to many medium-size rivers in agricultural regions.\",\"PeriodicalId\":510255,\"journal\":{\"name\":\"Water Practice & Technology\",\"volume\":\" 33\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Practice & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wpt.2024.068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2024.068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A manifold learning perspective on surrogate modeling of nitrates in the Kansas River
A non-linear surrogate model of nitrate concentration in the Kansas River (USA) is described. The model is an (almost) Piece-wise Linear response surface that provides a mean field approximation to the dynamics of the measured data for nitrate plus nitrite (target product) correlations to turbidity and chlorophyll-a concentrations (input variables). The method extends the United States Geological Survey’s linear procedures for surrogate data modeling allowing for better approximations for river systems exhibiting algal blooms due to nutrient-rich source waters. The model and visualization procedures illustrated in the Kansas River example should be generally applicable to many medium-size rivers in agricultural regions.