Yujeong Jeong, Talshyn Begildayeva, J. Theerthagiri, Ahreum Min, C. J. Moon, Jangyun Kim, S. S. Naik, Myong Yong Choi
{"title":"激光驱动液体组装:用于高效水电解的金属纳米团簇装饰的镍(OH)2/镍泡沫","authors":"Yujeong Jeong, Talshyn Begildayeva, J. Theerthagiri, Ahreum Min, C. J. Moon, Jangyun Kim, S. S. Naik, Myong Yong Choi","doi":"10.1002/smm2.1281","DOIUrl":null,"url":null,"abstract":"Herein, an in situ approach of pulsed laser irradiation in liquids (PLIL) was exploited to create surface‐modified electrodes for eco‐friendly H2 fuel production via electrolysis. The surface of the nickel foam (NF) substrate was nondestructively modified in 1.0 mol/L KOH using PLIL, resulting in a highly reactive Ni(OH)2/NF. Moreover, single‐metal Ir, Ru, and Pd nanoclusters were introduced onto Ni(OH)2/NF via appropriate metal precursors. This simultaneous surface oxidation of the NF to Ni(OH)2 and decoration with reduced metallic nanoparticles during PLIL are advantageous for promoting hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and overall water splitting (OWS). The Ir‐Ni(OH)2/NF electrode demonstrates superior performance, achieving the lowest overpotentials at 10 mA/cm2 (η) with 74 mV (HER) and 268 mV (OER). The OWS using Ir‐Ni(OH)2/NF||Ir‐Ni(OH)2/NF cell demonstrated a low voltage of 1.592 V, reaching 10 mA/cm2 with notable stability of 72 h. Ir‐Ni(OH)2/NF performance is assigned to the improved defects and boosted intrinsic properties resulting from the synergy between metallic‐nanoparticles and the oxidized NF surface, which are positively influenced by PLIL.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser‐driven liquid assembly: Metal‐nanocluster‐decorated Ni(OH)2/nickel foam for efficient water electrolysis\",\"authors\":\"Yujeong Jeong, Talshyn Begildayeva, J. Theerthagiri, Ahreum Min, C. J. Moon, Jangyun Kim, S. S. Naik, Myong Yong Choi\",\"doi\":\"10.1002/smm2.1281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, an in situ approach of pulsed laser irradiation in liquids (PLIL) was exploited to create surface‐modified electrodes for eco‐friendly H2 fuel production via electrolysis. The surface of the nickel foam (NF) substrate was nondestructively modified in 1.0 mol/L KOH using PLIL, resulting in a highly reactive Ni(OH)2/NF. Moreover, single‐metal Ir, Ru, and Pd nanoclusters were introduced onto Ni(OH)2/NF via appropriate metal precursors. This simultaneous surface oxidation of the NF to Ni(OH)2 and decoration with reduced metallic nanoparticles during PLIL are advantageous for promoting hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and overall water splitting (OWS). The Ir‐Ni(OH)2/NF electrode demonstrates superior performance, achieving the lowest overpotentials at 10 mA/cm2 (η) with 74 mV (HER) and 268 mV (OER). The OWS using Ir‐Ni(OH)2/NF||Ir‐Ni(OH)2/NF cell demonstrated a low voltage of 1.592 V, reaching 10 mA/cm2 with notable stability of 72 h. Ir‐Ni(OH)2/NF performance is assigned to the improved defects and boosted intrinsic properties resulting from the synergy between metallic‐nanoparticles and the oxidized NF surface, which are positively influenced by PLIL.\",\"PeriodicalId\":21794,\"journal\":{\"name\":\"SmartMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SmartMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smm2.1281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laser‐driven liquid assembly: Metal‐nanocluster‐decorated Ni(OH)2/nickel foam for efficient water electrolysis
Herein, an in situ approach of pulsed laser irradiation in liquids (PLIL) was exploited to create surface‐modified electrodes for eco‐friendly H2 fuel production via electrolysis. The surface of the nickel foam (NF) substrate was nondestructively modified in 1.0 mol/L KOH using PLIL, resulting in a highly reactive Ni(OH)2/NF. Moreover, single‐metal Ir, Ru, and Pd nanoclusters were introduced onto Ni(OH)2/NF via appropriate metal precursors. This simultaneous surface oxidation of the NF to Ni(OH)2 and decoration with reduced metallic nanoparticles during PLIL are advantageous for promoting hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and overall water splitting (OWS). The Ir‐Ni(OH)2/NF electrode demonstrates superior performance, achieving the lowest overpotentials at 10 mA/cm2 (η) with 74 mV (HER) and 268 mV (OER). The OWS using Ir‐Ni(OH)2/NF||Ir‐Ni(OH)2/NF cell demonstrated a low voltage of 1.592 V, reaching 10 mA/cm2 with notable stability of 72 h. Ir‐Ni(OH)2/NF performance is assigned to the improved defects and boosted intrinsic properties resulting from the synergy between metallic‐nanoparticles and the oxidized NF surface, which are positively influenced by PLIL.