R. N. M. Delda, R. L. B. del Rosario, B. Tuazon, G. S. Robles, M. V. Villablanca, M. T. Espino, J. R. Dizon
{"title":"伽马辐照对三维打印聚碳酸酯-丙烯腈-丁二烯-苯乙烯拉伸性能的影响","authors":"R. N. M. Delda, R. L. B. del Rosario, B. Tuazon, G. S. Robles, M. V. Villablanca, M. T. Espino, J. R. Dizon","doi":"10.4028/p-6xqmkv","DOIUrl":null,"url":null,"abstract":"3D printing is now being applied in various research areas due to its ability to produce highly complex parts whenever needed. This is highly helpful in the fields of robotics; radiation environment monitoring and space applications where stand-alone equipment are usually required. In this work, FDM 3D-printed polycarbonate acrylonitrile butadiene styrene (PCABS) samples were subjected to 1 kGy to 9 kGy of gamma irradiation from a Cobalt-60 irradiator. Parameters such as infill density and dose rate were modified to determine the best setting to improve the mechanical characteristics of the 3D-printed thermoplastic. Results show that samples with lower infill density obtain higher ultimate strength when exposed to higher doses of radiation.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Gamma Irradiation on the Tensile Properties of 3D-Printed Polycarbonate Acrylonitrile Butadiene Styrene\",\"authors\":\"R. N. M. Delda, R. L. B. del Rosario, B. Tuazon, G. S. Robles, M. V. Villablanca, M. T. Espino, J. R. Dizon\",\"doi\":\"10.4028/p-6xqmkv\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D printing is now being applied in various research areas due to its ability to produce highly complex parts whenever needed. This is highly helpful in the fields of robotics; radiation environment monitoring and space applications where stand-alone equipment are usually required. In this work, FDM 3D-printed polycarbonate acrylonitrile butadiene styrene (PCABS) samples were subjected to 1 kGy to 9 kGy of gamma irradiation from a Cobalt-60 irradiator. Parameters such as infill density and dose rate were modified to determine the best setting to improve the mechanical characteristics of the 3D-printed thermoplastic. Results show that samples with lower infill density obtain higher ultimate strength when exposed to higher doses of radiation.\",\"PeriodicalId\":18262,\"journal\":{\"name\":\"Materials Science Forum\",\"volume\":\" 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-6xqmkv\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-6xqmkv","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由于 3D 打印能够根据需要随时生产高度复杂的部件,因此目前已被应用于各种研究领域。这对于通常需要独立设备的机器人、辐射环境监测和空间应用领域大有帮助。在这项工作中,FDM 三维打印的聚碳酸酯丙烯腈丁二烯苯乙烯(PCABS)样品受到来自钴-60辐照装置的 1 kGy 至 9 kGy 伽马辐照。对填充密度和剂量率等参数进行了修改,以确定改善 3D 打印热塑性塑料机械特性的最佳设置。结果表明,填充密度较低的样品在接受较高剂量的辐照时可获得较高的极限强度。
Effects of Gamma Irradiation on the Tensile Properties of 3D-Printed Polycarbonate Acrylonitrile Butadiene Styrene
3D printing is now being applied in various research areas due to its ability to produce highly complex parts whenever needed. This is highly helpful in the fields of robotics; radiation environment monitoring and space applications where stand-alone equipment are usually required. In this work, FDM 3D-printed polycarbonate acrylonitrile butadiene styrene (PCABS) samples were subjected to 1 kGy to 9 kGy of gamma irradiation from a Cobalt-60 irradiator. Parameters such as infill density and dose rate were modified to determine the best setting to improve the mechanical characteristics of the 3D-printed thermoplastic. Results show that samples with lower infill density obtain higher ultimate strength when exposed to higher doses of radiation.