{"title":"论分子和核耦合哈密顿可溶模型的特征值","authors":"T. Rasulov, E. Dilmurodov","doi":"10.37256/cm.5120242728","DOIUrl":null,"url":null,"abstract":"In this paper, a special type of soluble model corresponding to a coupled molecular and nuclear Hamiltonians H, the so-called generalized Friedrichs model, is considered. We aim to determine and provide the most important properties of the well-known Faddeev operator corresponding to H accommodating a number of discrete eigenvalues. Furthermore, we provide a formula for counting the multiplicity of discrete eigenvalues of H.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Eigenvalues of a Soluble Model of Coupled Molecular and Nuclear Hamiltonians\",\"authors\":\"T. Rasulov, E. Dilmurodov\",\"doi\":\"10.37256/cm.5120242728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a special type of soluble model corresponding to a coupled molecular and nuclear Hamiltonians H, the so-called generalized Friedrichs model, is considered. We aim to determine and provide the most important properties of the well-known Faddeev operator corresponding to H accommodating a number of discrete eigenvalues. Furthermore, we provide a formula for counting the multiplicity of discrete eigenvalues of H.\",\"PeriodicalId\":504505,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.5120242728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120242728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文考虑了与耦合分子和核汉密尔顿H相对应的一种特殊类型的可溶模型,即所谓的广义弗里德里希模型。我们的目的是确定并提供与 H 相对应的著名的法迪夫算子的最重要性质,该算子包含若干离散特征值。此外,我们还提供了一个计算 H 离散特征值多重性的公式。
On the Eigenvalues of a Soluble Model of Coupled Molecular and Nuclear Hamiltonians
In this paper, a special type of soluble model corresponding to a coupled molecular and nuclear Hamiltonians H, the so-called generalized Friedrichs model, is considered. We aim to determine and provide the most important properties of the well-known Faddeev operator corresponding to H accommodating a number of discrete eigenvalues. Furthermore, we provide a formula for counting the multiplicity of discrete eigenvalues of H.