{"title":"自适应分阶多尺度优化 TV-L1 光流算法","authors":"Qi Yang, Yilu Wang, Lu Liu, Xiaomeng Zhang","doi":"10.3390/fractalfract8040179","DOIUrl":null,"url":null,"abstract":"We propose an adaptive fractional multi-scale optimization optical flow algorithm, which for the first time improves the over-smoothing of optical flow estimation under the total variation model from the perspective of global feature and local texture balance, and solves the problem that the convergence of fractional optical flow algorithms depends on the order parameter. Specifically, a fractional-order discrete L1-regularization Total Variational Optical Flow model is constructed. On this basis, the Ant Lion algorithm is innovatively used to realize the iterative calculation of the optical flow equation, and the fractional order is dynamically adjusted to obtain an adaptive optimization algorithm with strong search accuracy and high efficiency. In this paper, the flexibility of optical flow estimation in weak gradient texture scenes is increased, and the optical flow extraction rate of target features at multiple scales is greatly improved. We show excellent recognition performance and stability under the MPI_Sintel and Middlebury benchmarks.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Fractional-Order Multi-Scale Optimization TV-L1 Optical Flow Algorithm\",\"authors\":\"Qi Yang, Yilu Wang, Lu Liu, Xiaomeng Zhang\",\"doi\":\"10.3390/fractalfract8040179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an adaptive fractional multi-scale optimization optical flow algorithm, which for the first time improves the over-smoothing of optical flow estimation under the total variation model from the perspective of global feature and local texture balance, and solves the problem that the convergence of fractional optical flow algorithms depends on the order parameter. Specifically, a fractional-order discrete L1-regularization Total Variational Optical Flow model is constructed. On this basis, the Ant Lion algorithm is innovatively used to realize the iterative calculation of the optical flow equation, and the fractional order is dynamically adjusted to obtain an adaptive optimization algorithm with strong search accuracy and high efficiency. In this paper, the flexibility of optical flow estimation in weak gradient texture scenes is increased, and the optical flow extraction rate of target features at multiple scales is greatly improved. We show excellent recognition performance and stability under the MPI_Sintel and Middlebury benchmarks.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8040179\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8040179","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
We propose an adaptive fractional multi-scale optimization optical flow algorithm, which for the first time improves the over-smoothing of optical flow estimation under the total variation model from the perspective of global feature and local texture balance, and solves the problem that the convergence of fractional optical flow algorithms depends on the order parameter. Specifically, a fractional-order discrete L1-regularization Total Variational Optical Flow model is constructed. On this basis, the Ant Lion algorithm is innovatively used to realize the iterative calculation of the optical flow equation, and the fractional order is dynamically adjusted to obtain an adaptive optimization algorithm with strong search accuracy and high efficiency. In this paper, the flexibility of optical flow estimation in weak gradient texture scenes is increased, and the optical flow extraction rate of target features at multiple scales is greatly improved. We show excellent recognition performance and stability under the MPI_Sintel and Middlebury benchmarks.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.