利用弥散放射组学推进无创胶质瘤分类:探索信号强度归一化的影响

Martha Foltyn-Dumitru, Marianne Schell, Felix Sahm, T. Kessler, Wolfgang Wick, Martin Bendszus, Aditya Rastogi, G. Brugnara, Phillipp Vollmuth
{"title":"利用弥散放射组学推进无创胶质瘤分类:探索信号强度归一化的影响","authors":"Martha Foltyn-Dumitru, Marianne Schell, Felix Sahm, T. Kessler, Wolfgang Wick, Martin Bendszus, Aditya Rastogi, G. Brugnara, Phillipp Vollmuth","doi":"10.1093/noajnl/vdae043","DOIUrl":null,"url":null,"abstract":"\n \n \n This study investigates the influence of diffusion-weighted MRI (DWI) on radiomic-based prediction of glioma types according to molecular status and assesses the impact of DWI intensity normalization on model generalizability.\n \n \n \n Radiomic features, compliant with IBSI standards, were extracted from preoperative MRI of 549 patients with diffuse glioma, known IDH, and 1p19q-status. Anatomical sequences (T1, T1c, T2, FLAIR) underwent N4-Bias Field Correction (N4) and WhiteStripe normalization (N4/WS). Apparent diffusion coefficient (ADC) maps were normalized using N4 or N4/z-score. Nine machine-learning algorithms were trained for multiclass prediction of glioma types (IDH-mutant 1p/19q codeleted, IDH-mutant 1p/19q non-codeleted, IDH-wildtype). Four approaches were compared: anatomical, anatomical + ADC naive, anatomical + ADC N4, and anatomical + ADC N4/z-score. The UCSF-glioma dataset (n=409) was used for external validation.\n \n \n \n Naïve-Bayes algorithms yielded overall the best performance on the internal test-set. Adding ADC radiomics significantly improved AUC from 0.79 to 0.86 (p= .011) for the IDH-wildtype subgroup, but not for the other two glioma subgroups (p>0.05). In the external UCSF dataset, the addition of ADC radiomics yielded a significantly higher AUC for the IDH-wildtype subgroup (p≤ .001): 0.80 (N4/WS anatomical alone), 0.81 (anatomical + ADC naive), 0.81 (anatomical + ADC N4) and 0.88 (anatomical + ADC N4/z-score) as well as for the IDH-mutant 1p/19q non-codeleted subgroup (p< .012 each).\n \n \n \n ADC radiomics can enhance the performance of conventional MRI-based radiomic models, particularly for IDH-wildtype glioma. The benefit of intensity normalization of ADC maps depends on the type and context of the used data.\n","PeriodicalId":19138,"journal":{"name":"Neuro-oncology Advances","volume":" 43","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing non-invasive glioma classification with diffusion radiomics: Exploring the impact of signal intensity normalization\",\"authors\":\"Martha Foltyn-Dumitru, Marianne Schell, Felix Sahm, T. Kessler, Wolfgang Wick, Martin Bendszus, Aditya Rastogi, G. Brugnara, Phillipp Vollmuth\",\"doi\":\"10.1093/noajnl/vdae043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n This study investigates the influence of diffusion-weighted MRI (DWI) on radiomic-based prediction of glioma types according to molecular status and assesses the impact of DWI intensity normalization on model generalizability.\\n \\n \\n \\n Radiomic features, compliant with IBSI standards, were extracted from preoperative MRI of 549 patients with diffuse glioma, known IDH, and 1p19q-status. Anatomical sequences (T1, T1c, T2, FLAIR) underwent N4-Bias Field Correction (N4) and WhiteStripe normalization (N4/WS). Apparent diffusion coefficient (ADC) maps were normalized using N4 or N4/z-score. Nine machine-learning algorithms were trained for multiclass prediction of glioma types (IDH-mutant 1p/19q codeleted, IDH-mutant 1p/19q non-codeleted, IDH-wildtype). Four approaches were compared: anatomical, anatomical + ADC naive, anatomical + ADC N4, and anatomical + ADC N4/z-score. The UCSF-glioma dataset (n=409) was used for external validation.\\n \\n \\n \\n Naïve-Bayes algorithms yielded overall the best performance on the internal test-set. Adding ADC radiomics significantly improved AUC from 0.79 to 0.86 (p= .011) for the IDH-wildtype subgroup, but not for the other two glioma subgroups (p>0.05). In the external UCSF dataset, the addition of ADC radiomics yielded a significantly higher AUC for the IDH-wildtype subgroup (p≤ .001): 0.80 (N4/WS anatomical alone), 0.81 (anatomical + ADC naive), 0.81 (anatomical + ADC N4) and 0.88 (anatomical + ADC N4/z-score) as well as for the IDH-mutant 1p/19q non-codeleted subgroup (p< .012 each).\\n \\n \\n \\n ADC radiomics can enhance the performance of conventional MRI-based radiomic models, particularly for IDH-wildtype glioma. The benefit of intensity normalization of ADC maps depends on the type and context of the used data.\\n\",\"PeriodicalId\":19138,\"journal\":{\"name\":\"Neuro-oncology Advances\",\"volume\":\" 43\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/noajnl/vdae043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了弥散加权核磁共振成像(DWI)对根据分子状态基于放射学预测胶质瘤类型的影响,并评估了DWI强度归一化对模型通用性的影响。 从 549 例弥漫性胶质瘤、已知 IDH 和 1p19q 状态的患者的术前 MRI 中提取了符合 IBSI 标准的放射学特征。解剖序列(T1、T1c、T2、FLAIR)经过 N4 偏场校正(N4)和白条归一化(N4/WS)处理。表观扩散系数(ADC)图使用 N4 或 N4/z-score 归一化。对九种机器学习算法进行了训练,以对胶质瘤类型(IDH-突变 1p/19q 缺失、IDH-突变 1p/19q 非缺失、IDH-野生型)进行多分类预测。对四种方法进行了比较:解剖学方法、解剖学 + ADC 天真方法、解剖学 + ADC N4 方法和解剖学 + ADC N4/z-score 方法。加州大学旧金山分校胶质瘤数据集(n=409)用于外部验证。 在内部测试集上,Naïve-Bayes 算法总体性能最佳。添加 ADC 放射组学后,IDH-野生型亚组的 AUC 从 0.79 显著提高到 0.86(p= 0.011),而其他两个胶质瘤亚组的 AUC 则没有提高(p>0.05)。在 UCSF 外部数据集中,加入 ADC 放射组学后,IDH-野生型亚组的 AUC 明显更高(p≤ .001):0.80(N4/WS 单纯解剖)、0.81(解剖 + ADC 天真)、0.81(解剖 + ADC N4)和 0.88(解剖 + ADC N4/z-score),IDH 突变 1p/19q 非删码亚组的 AUC 也显著提高(p< .012)。 ADC放射组学可以提高基于核磁共振成像的传统放射组学模型的性能,尤其是在IDH-野生型胶质瘤方面。ADC图强度归一化的益处取决于所用数据的类型和背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing non-invasive glioma classification with diffusion radiomics: Exploring the impact of signal intensity normalization
This study investigates the influence of diffusion-weighted MRI (DWI) on radiomic-based prediction of glioma types according to molecular status and assesses the impact of DWI intensity normalization on model generalizability. Radiomic features, compliant with IBSI standards, were extracted from preoperative MRI of 549 patients with diffuse glioma, known IDH, and 1p19q-status. Anatomical sequences (T1, T1c, T2, FLAIR) underwent N4-Bias Field Correction (N4) and WhiteStripe normalization (N4/WS). Apparent diffusion coefficient (ADC) maps were normalized using N4 or N4/z-score. Nine machine-learning algorithms were trained for multiclass prediction of glioma types (IDH-mutant 1p/19q codeleted, IDH-mutant 1p/19q non-codeleted, IDH-wildtype). Four approaches were compared: anatomical, anatomical + ADC naive, anatomical + ADC N4, and anatomical + ADC N4/z-score. The UCSF-glioma dataset (n=409) was used for external validation. Naïve-Bayes algorithms yielded overall the best performance on the internal test-set. Adding ADC radiomics significantly improved AUC from 0.79 to 0.86 (p= .011) for the IDH-wildtype subgroup, but not for the other two glioma subgroups (p>0.05). In the external UCSF dataset, the addition of ADC radiomics yielded a significantly higher AUC for the IDH-wildtype subgroup (p≤ .001): 0.80 (N4/WS anatomical alone), 0.81 (anatomical + ADC naive), 0.81 (anatomical + ADC N4) and 0.88 (anatomical + ADC N4/z-score) as well as for the IDH-mutant 1p/19q non-codeleted subgroup (p< .012 each). ADC radiomics can enhance the performance of conventional MRI-based radiomic models, particularly for IDH-wildtype glioma. The benefit of intensity normalization of ADC maps depends on the type and context of the used data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信