Nasikhudin Nasikhudin, Yusril Al Fath, Istiqomah Istiqomah, Hari Rahmadani, Markus Diantoro, H. Pujiarti
{"title":"银纳米线 (AgNWs) 在柔性透明导电电极应用中的后处理效果:微型综述","authors":"Nasikhudin Nasikhudin, Yusril Al Fath, Istiqomah Istiqomah, Hari Rahmadani, Markus Diantoro, H. Pujiarti","doi":"10.4028/p-e4avqd","DOIUrl":null,"url":null,"abstract":"Transparent flexible electrodes (TFEs) are extremely crucial for expanding flexible and wearable electronic devices. Silver nanowires (AgNWs) have been extensively investigated as an alternative to replace Indium Tin Oxide (ITO) as a commercial TFE due to their high conductivity, transparency, and flexibility. AgNWs have replaced ITO-based electrodes as the preferred approach in flexible, transparent, and conductive electrodes (FTCE). AgNWs outperform other materials, such as Reduced Graphene Oxide (RGO), ceramic material, Carbon Nanotubes (CNT), and conductive polymers, in terms of electrical conductivity, transmittance, flexibility, and low sheet resistance. Numerous techniques, including as electrospinning, spray coating, spin coating, and doctor blades, are used to use AgNWs as flexible substrates. Seed-based growth and template-assisted synthesis are two fundamental synthesis techniques that could be used to generate AgNWs. However, poor adhesiveness, and thermal and electrical stability, begin to be bottlenecks for AgNWs as high deployment in a variety of devices. So AgNWs synthesis process began to shift to other methods, such as wet chemical and polyol. In this paper, short and clear summary of various advances including post-treatment methods such as UV radiation, microwave, sonication, quenching, and so on is conducted to be one step forward to test mechanical properties and to improve AgNWs performance.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silver Nanowires (AgNWs) Post-Treatment Effect in Application of Flexible Transparent and Conductive Electrodes: A Mini Review\",\"authors\":\"Nasikhudin Nasikhudin, Yusril Al Fath, Istiqomah Istiqomah, Hari Rahmadani, Markus Diantoro, H. Pujiarti\",\"doi\":\"10.4028/p-e4avqd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transparent flexible electrodes (TFEs) are extremely crucial for expanding flexible and wearable electronic devices. Silver nanowires (AgNWs) have been extensively investigated as an alternative to replace Indium Tin Oxide (ITO) as a commercial TFE due to their high conductivity, transparency, and flexibility. AgNWs have replaced ITO-based electrodes as the preferred approach in flexible, transparent, and conductive electrodes (FTCE). AgNWs outperform other materials, such as Reduced Graphene Oxide (RGO), ceramic material, Carbon Nanotubes (CNT), and conductive polymers, in terms of electrical conductivity, transmittance, flexibility, and low sheet resistance. Numerous techniques, including as electrospinning, spray coating, spin coating, and doctor blades, are used to use AgNWs as flexible substrates. Seed-based growth and template-assisted synthesis are two fundamental synthesis techniques that could be used to generate AgNWs. However, poor adhesiveness, and thermal and electrical stability, begin to be bottlenecks for AgNWs as high deployment in a variety of devices. So AgNWs synthesis process began to shift to other methods, such as wet chemical and polyol. In this paper, short and clear summary of various advances including post-treatment methods such as UV radiation, microwave, sonication, quenching, and so on is conducted to be one step forward to test mechanical properties and to improve AgNWs performance.\",\"PeriodicalId\":18262,\"journal\":{\"name\":\"Materials Science Forum\",\"volume\":\" 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-e4avqd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-e4avqd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silver Nanowires (AgNWs) Post-Treatment Effect in Application of Flexible Transparent and Conductive Electrodes: A Mini Review
Transparent flexible electrodes (TFEs) are extremely crucial for expanding flexible and wearable electronic devices. Silver nanowires (AgNWs) have been extensively investigated as an alternative to replace Indium Tin Oxide (ITO) as a commercial TFE due to their high conductivity, transparency, and flexibility. AgNWs have replaced ITO-based electrodes as the preferred approach in flexible, transparent, and conductive electrodes (FTCE). AgNWs outperform other materials, such as Reduced Graphene Oxide (RGO), ceramic material, Carbon Nanotubes (CNT), and conductive polymers, in terms of electrical conductivity, transmittance, flexibility, and low sheet resistance. Numerous techniques, including as electrospinning, spray coating, spin coating, and doctor blades, are used to use AgNWs as flexible substrates. Seed-based growth and template-assisted synthesis are two fundamental synthesis techniques that could be used to generate AgNWs. However, poor adhesiveness, and thermal and electrical stability, begin to be bottlenecks for AgNWs as high deployment in a variety of devices. So AgNWs synthesis process began to shift to other methods, such as wet chemical and polyol. In this paper, short and clear summary of various advances including post-treatment methods such as UV radiation, microwave, sonication, quenching, and so on is conducted to be one step forward to test mechanical properties and to improve AgNWs performance.