{"title":"BISFT--利用 CNN 的二维分解临床图像分离与融合技术","authors":"G. Pradeepkumar, S. Kavitha","doi":"10.3233/jifs-239695","DOIUrl":null,"url":null,"abstract":"To provide the best possible performance in precisely segmenting clinical images, several approaches are used. Convolutional neural networks are one method used in it to extract its features, which combine several models with several additional methods. It also improves the efficiency of generalisation between categorised and uncategorized image categories. The method proposed combines multi-style image fusion with two-dimensional fracture image representation. The photographs on this page have been updated with a variety of images to improve concentration sharing and achieve the desired visual look. The border detection algorithm is then used to extract the exact border of the image from the contrast extended images. It will then be divided into basic and comprehensive layers. The fused image was then created using augmented end layers.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BISFT- two-dimensional breakdown clinical image seperation and fusion technique using CNN\",\"authors\":\"G. Pradeepkumar, S. Kavitha\",\"doi\":\"10.3233/jifs-239695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To provide the best possible performance in precisely segmenting clinical images, several approaches are used. Convolutional neural networks are one method used in it to extract its features, which combine several models with several additional methods. It also improves the efficiency of generalisation between categorised and uncategorized image categories. The method proposed combines multi-style image fusion with two-dimensional fracture image representation. The photographs on this page have been updated with a variety of images to improve concentration sharing and achieve the desired visual look. The border detection algorithm is then used to extract the exact border of the image from the contrast extended images. It will then be divided into basic and comprehensive layers. The fused image was then created using augmented end layers.\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-239695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-239695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BISFT- two-dimensional breakdown clinical image seperation and fusion technique using CNN
To provide the best possible performance in precisely segmenting clinical images, several approaches are used. Convolutional neural networks are one method used in it to extract its features, which combine several models with several additional methods. It also improves the efficiency of generalisation between categorised and uncategorized image categories. The method proposed combines multi-style image fusion with two-dimensional fracture image representation. The photographs on this page have been updated with a variety of images to improve concentration sharing and achieve the desired visual look. The border detection algorithm is then used to extract the exact border of the image from the contrast extended images. It will then be divided into basic and comprehensive layers. The fused image was then created using augmented end layers.