对 α-SiC 弯曲强度模型进行贝叶斯不确定性更新

Eric A. Walker, Mengyuan Sun, James Chen
{"title":"对 α-SiC 弯曲强度模型进行贝叶斯不确定性更新","authors":"Eric A. Walker, Mengyuan Sun, James Chen","doi":"10.37256/mp.3120244395","DOIUrl":null,"url":null,"abstract":"This article demonstrates a statistical method to update the uncertainty in the flexural strength of silicon carbide, α-SiC. The previously reported uncertainty for the flexural strength of α-SiC was a constant ±15%.  However, this uncertainty should be adjusted as more data becomes available.  A Bayesian approach is proposed to rapidly and precisely update the uncertainty.  To validate the method, five scenarios are demonstrated.  The first scenario assumes the experimental data is distributed as the model predicts.  The second and third scenarios have the model underestimating and overestimating flexural strength, respectively.  The fourth and fifth scenarios use data from a thermo-mechanical fracture model.  The thermo-mechanical fracture model introduces a change in the temperature transition of flexural strength.  The uncertainty decreased from 15% to a range between 8.3% and 13.4%.  Two parameters are inferred in the fourth scenario while five are inferred in the fifth scenario.  Inferring five parameters leads to more consistent uncertainty across temperature.","PeriodicalId":509068,"journal":{"name":"Materials Plus","volume":" 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Uncertainty Update to a Model of Flexural Strength of α-SiC\",\"authors\":\"Eric A. Walker, Mengyuan Sun, James Chen\",\"doi\":\"10.37256/mp.3120244395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article demonstrates a statistical method to update the uncertainty in the flexural strength of silicon carbide, α-SiC. The previously reported uncertainty for the flexural strength of α-SiC was a constant ±15%.  However, this uncertainty should be adjusted as more data becomes available.  A Bayesian approach is proposed to rapidly and precisely update the uncertainty.  To validate the method, five scenarios are demonstrated.  The first scenario assumes the experimental data is distributed as the model predicts.  The second and third scenarios have the model underestimating and overestimating flexural strength, respectively.  The fourth and fifth scenarios use data from a thermo-mechanical fracture model.  The thermo-mechanical fracture model introduces a change in the temperature transition of flexural strength.  The uncertainty decreased from 15% to a range between 8.3% and 13.4%.  Two parameters are inferred in the fourth scenario while five are inferred in the fifth scenario.  Inferring five parameters leads to more consistent uncertainty across temperature.\",\"PeriodicalId\":509068,\"journal\":{\"name\":\"Materials Plus\",\"volume\":\" 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/mp.3120244395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/mp.3120244395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了一种更新碳化硅(α-SiC)抗弯强度不确定性的统计方法。之前报告的 α-SiC 抗弯强度的不确定性恒定为 ±15%。 然而,随着更多数据的获得,这一不确定性应进行调整。 我们提出了一种贝叶斯方法来快速、精确地更新不确定性。 为了验证该方法,演示了五种情况。 第一种方案假设实验数据的分布与模型预测的一致。 第二和第三种情况是模型分别低估和高估了抗弯强度。 第四和第五种方案使用了热机械断裂模型的数据。 热机械断裂模型引入了抗折强度温度转变的变化。 不确定性从 15%下降到 8.3%到 13.4%之间。 第四种方案推断出两个参数,而第五种方案推断出五个参数。 推断五个参数可使不同温度下的不确定性更加一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Uncertainty Update to a Model of Flexural Strength of α-SiC
This article demonstrates a statistical method to update the uncertainty in the flexural strength of silicon carbide, α-SiC. The previously reported uncertainty for the flexural strength of α-SiC was a constant ±15%.  However, this uncertainty should be adjusted as more data becomes available.  A Bayesian approach is proposed to rapidly and precisely update the uncertainty.  To validate the method, five scenarios are demonstrated.  The first scenario assumes the experimental data is distributed as the model predicts.  The second and third scenarios have the model underestimating and overestimating flexural strength, respectively.  The fourth and fifth scenarios use data from a thermo-mechanical fracture model.  The thermo-mechanical fracture model introduces a change in the temperature transition of flexural strength.  The uncertainty decreased from 15% to a range between 8.3% and 13.4%.  Two parameters are inferred in the fourth scenario while five are inferred in the fifth scenario.  Inferring five parameters leads to more consistent uncertainty across temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信