利用分数阶导数建立寨卡病毒传播数学模型的优化控制问题

A. Kouidere, Amine El Bhih, Issam Minifi, O. Balatif, Khalid Adnaoui
{"title":"利用分数阶导数建立寨卡病毒传播数学模型的优化控制问题","authors":"A. Kouidere, Amine El Bhih, Issam Minifi, O. Balatif, Khalid Adnaoui","doi":"10.3389/fams.2024.1376507","DOIUrl":null,"url":null,"abstract":"This study delves into the dynamics of Zika virus transmission by employing a mathematical model to explain virus spread with fractional order derivatives. The population is divided into two groups: the human group and the ticks group to accurately explain the transmission routes of the virus. The objective of this research is to protect susceptible individuals from infection and curb the spread of this endemic disease. To achieve this, we have included two control measures: the first is a sensibilization program, and the second is treatment. We investigate the use of optimal control strategies and fractional derivative techniques under the Caputo method to reduce the number of exposed and infected individuals. By employing the Pontryagin maximum principle to analyze and characterize the optimal controls, the proposed method is further validated through numerical simulations. The outcome of this study highlights the importance of containing the rate of dynamic dissemination in preventing the Zika epidemic.","PeriodicalId":507585,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control problem for mathematical modeling of Zika virus transmission using fractional order derivatives\",\"authors\":\"A. Kouidere, Amine El Bhih, Issam Minifi, O. Balatif, Khalid Adnaoui\",\"doi\":\"10.3389/fams.2024.1376507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study delves into the dynamics of Zika virus transmission by employing a mathematical model to explain virus spread with fractional order derivatives. The population is divided into two groups: the human group and the ticks group to accurately explain the transmission routes of the virus. The objective of this research is to protect susceptible individuals from infection and curb the spread of this endemic disease. To achieve this, we have included two control measures: the first is a sensibilization program, and the second is treatment. We investigate the use of optimal control strategies and fractional derivative techniques under the Caputo method to reduce the number of exposed and infected individuals. By employing the Pontryagin maximum principle to analyze and characterize the optimal controls, the proposed method is further validated through numerical simulations. The outcome of this study highlights the importance of containing the rate of dynamic dissemination in preventing the Zika epidemic.\",\"PeriodicalId\":507585,\"journal\":{\"name\":\"Frontiers in Applied Mathematics and Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fams.2024.1376507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2024.1376507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用数学模型,以分数阶导数解释病毒传播,从而深入研究寨卡病毒的传播动态。研究将人群分为两组:人类组和蜱虫组,以准确解释病毒的传播途径。这项研究的目的是保护易感人群免受感染,并遏制这种地方病的传播。为此,我们采取了两项控制措施:第一项是宣传计划,第二项是治疗。我们研究了在卡普托方法下使用最优控制策略和分数导数技术来减少暴露和感染个体的数量。通过使用庞特里亚金最大原则分析和描述最优控制,并通过数值模拟进一步验证了所提出的方法。这项研究的结果凸显了控制动态传播速度对预防寨卡疫情的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control problem for mathematical modeling of Zika virus transmission using fractional order derivatives
This study delves into the dynamics of Zika virus transmission by employing a mathematical model to explain virus spread with fractional order derivatives. The population is divided into two groups: the human group and the ticks group to accurately explain the transmission routes of the virus. The objective of this research is to protect susceptible individuals from infection and curb the spread of this endemic disease. To achieve this, we have included two control measures: the first is a sensibilization program, and the second is treatment. We investigate the use of optimal control strategies and fractional derivative techniques under the Caputo method to reduce the number of exposed and infected individuals. By employing the Pontryagin maximum principle to analyze and characterize the optimal controls, the proposed method is further validated through numerical simulations. The outcome of this study highlights the importance of containing the rate of dynamic dissemination in preventing the Zika epidemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信