{"title":"基于神经网络的模糊预测控制模型在教学资源推荐与匹配中的应用","authors":"Shuai Shao, Dongwei Li","doi":"10.3233/jifs-233265","DOIUrl":null,"url":null,"abstract":"As technology evolves, the allocation and use of educational resources becomes increasingly complex. Due to the many factors involved in recommending and matching English education resources, traditional predictive control models are no longer adequate. Therefore, fuzzy predictive control models based on neural networks have emerged. To increase the effectiveness and efficiency of using English educational resources (EER), this research aims to create a neural network-based fuzzy predictive control model (T-S-BPNN) for resource suggestion and matching. The results of the study show that the T-S-BPNN model α proposed in the study starts from 0 and increases sequentially by 0.1 up to 1, observing the change in MAE values. The experiment’s findings demonstrate that the value of MAE is lowest at values around 0.5. The T-S-BPNN model, on the other hand, gradually plateaued in its adaptation rate up to 7 runs, reaching about 9.8%. The accuracy rate peaked at 0.843 when the number of recommendations reached 7. The recall rate also peaked at 0.647 when the number of recommended English courses reached 7. The R-value for each set hovered around 0.97, which is a good fit. And the R-value of the training set is 0.97024, which can indicate that the T-S-BPNN model model proposed in the study fits well. It indicates that the algorithm proposed in the study is highly practical.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of fuzzy prediction control model based on neural network in teaching resource recommendation and matching\",\"authors\":\"Shuai Shao, Dongwei Li\",\"doi\":\"10.3233/jifs-233265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As technology evolves, the allocation and use of educational resources becomes increasingly complex. Due to the many factors involved in recommending and matching English education resources, traditional predictive control models are no longer adequate. Therefore, fuzzy predictive control models based on neural networks have emerged. To increase the effectiveness and efficiency of using English educational resources (EER), this research aims to create a neural network-based fuzzy predictive control model (T-S-BPNN) for resource suggestion and matching. The results of the study show that the T-S-BPNN model α proposed in the study starts from 0 and increases sequentially by 0.1 up to 1, observing the change in MAE values. The experiment’s findings demonstrate that the value of MAE is lowest at values around 0.5. The T-S-BPNN model, on the other hand, gradually plateaued in its adaptation rate up to 7 runs, reaching about 9.8%. The accuracy rate peaked at 0.843 when the number of recommendations reached 7. The recall rate also peaked at 0.647 when the number of recommended English courses reached 7. The R-value for each set hovered around 0.97, which is a good fit. And the R-value of the training set is 0.97024, which can indicate that the T-S-BPNN model model proposed in the study fits well. It indicates that the algorithm proposed in the study is highly practical.\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-233265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of fuzzy prediction control model based on neural network in teaching resource recommendation and matching
As technology evolves, the allocation and use of educational resources becomes increasingly complex. Due to the many factors involved in recommending and matching English education resources, traditional predictive control models are no longer adequate. Therefore, fuzzy predictive control models based on neural networks have emerged. To increase the effectiveness and efficiency of using English educational resources (EER), this research aims to create a neural network-based fuzzy predictive control model (T-S-BPNN) for resource suggestion and matching. The results of the study show that the T-S-BPNN model α proposed in the study starts from 0 and increases sequentially by 0.1 up to 1, observing the change in MAE values. The experiment’s findings demonstrate that the value of MAE is lowest at values around 0.5. The T-S-BPNN model, on the other hand, gradually plateaued in its adaptation rate up to 7 runs, reaching about 9.8%. The accuracy rate peaked at 0.843 when the number of recommendations reached 7. The recall rate also peaked at 0.647 when the number of recommended English courses reached 7. The R-value for each set hovered around 0.97, which is a good fit. And the R-value of the training set is 0.97024, which can indicate that the T-S-BPNN model model proposed in the study fits well. It indicates that the algorithm proposed in the study is highly practical.