{"title":"在测量不确定性分析中考虑有关影响量的所有可用信息(先验信息和当前信息)的实用两步程序","authors":"Hening Huang","doi":"10.1007/s00769-024-01583-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the problem of computing the combined standard uncertainty of an indirect measurement, in which the measurand is related to multiple influence quantities through a measurement model. In practice, there may be prior information or current information, or both, about the influence quantities. We propose a practical two-step procedure for taking into account all available information (prior and current) about influence quantities in measurement uncertainty analysis. The first step is to combine prior and current information to form the merged information for each influence quantity based on the weighted average method or the law of combination of distributions. The second step deals with the propagation of the merged information to calculate the combined standard uncertainty using the law of propagation of uncertainty or the principle of propagation of distributions. The proposed two-step procedure is based entirely on frequentist statistics. A case study on the calibration of a test weight (mass calibration) is presented to demonstrate the effectiveness of the proposed two-step procedure and compare it with a subjective Bayesian approach.</p></div>","PeriodicalId":454,"journal":{"name":"Accreditation and Quality Assurance","volume":"29 3","pages":"215 - 223"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A practical two-step procedure for taking into account all available information (prior and current) about influence quantities in measurement uncertainty analysis\",\"authors\":\"Hening Huang\",\"doi\":\"10.1007/s00769-024-01583-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considers the problem of computing the combined standard uncertainty of an indirect measurement, in which the measurand is related to multiple influence quantities through a measurement model. In practice, there may be prior information or current information, or both, about the influence quantities. We propose a practical two-step procedure for taking into account all available information (prior and current) about influence quantities in measurement uncertainty analysis. The first step is to combine prior and current information to form the merged information for each influence quantity based on the weighted average method or the law of combination of distributions. The second step deals with the propagation of the merged information to calculate the combined standard uncertainty using the law of propagation of uncertainty or the principle of propagation of distributions. The proposed two-step procedure is based entirely on frequentist statistics. A case study on the calibration of a test weight (mass calibration) is presented to demonstrate the effectiveness of the proposed two-step procedure and compare it with a subjective Bayesian approach.</p></div>\",\"PeriodicalId\":454,\"journal\":{\"name\":\"Accreditation and Quality Assurance\",\"volume\":\"29 3\",\"pages\":\"215 - 223\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accreditation and Quality Assurance\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00769-024-01583-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accreditation and Quality Assurance","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00769-024-01583-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A practical two-step procedure for taking into account all available information (prior and current) about influence quantities in measurement uncertainty analysis
This paper considers the problem of computing the combined standard uncertainty of an indirect measurement, in which the measurand is related to multiple influence quantities through a measurement model. In practice, there may be prior information or current information, or both, about the influence quantities. We propose a practical two-step procedure for taking into account all available information (prior and current) about influence quantities in measurement uncertainty analysis. The first step is to combine prior and current information to form the merged information for each influence quantity based on the weighted average method or the law of combination of distributions. The second step deals with the propagation of the merged information to calculate the combined standard uncertainty using the law of propagation of uncertainty or the principle of propagation of distributions. The proposed two-step procedure is based entirely on frequentist statistics. A case study on the calibration of a test weight (mass calibration) is presented to demonstrate the effectiveness of the proposed two-step procedure and compare it with a subjective Bayesian approach.
期刊介绍:
Accreditation and Quality Assurance has established itself as the leading information and discussion forum for all aspects relevant to quality, transparency and reliability of measurement results in chemical and biological sciences. The journal serves the information needs of researchers, practitioners and decision makers dealing with quality assurance and quality management, including the development and application of metrological principles and concepts such as traceability or measurement uncertainty in the following fields: environment, nutrition, consumer protection, geology, metallurgy, pharmacy, forensics, clinical chemistry and laboratory medicine, and microbiology.