{"title":"浮力和 EPNM 效应下氢基主流体热改进的数值分析:垂直气缸研究","authors":"Adnan, W. Abbas, Aboulbaba Eladeb, L. Kolsi","doi":"10.1002/zamm.202200449","DOIUrl":null,"url":null,"abstract":"The nanofluids became much of interest due to their superior heat mechanism over the conventional fluids. The addition of nanoparticles in the host solvent enhances the internal ability of the liquid to store and transmit heat. Therefore, these fluids are widely used in biomedical engineering, detergents, medication, applied thermal engineering, mechanical, and chemical engineering and so forth. Keeping in mind the significance of nanofluids, this study is conducted to investigate the comparative heat transmission in and under the Effective Prandtl Number Model (EPNM) effects over a vertical permeable cylinder. Formulation of the model is carried out over a vertical cylinder about the stagnation point and the heat transport model is achieved after the successful implementation of the cylindrical stream function, nanofluids effective characteristics, and cylindrical similarity equations. The mathematical treatment was done via RK technique and furnished the results. The nanofluids have the capacity to control the fluid motion more effectively than ordinary fluid and combined convection is better where rapid fluid movement is desired. In the existence of EPNM, higher heat transmission is achieved and is prominent for based on their thermophysical values. Further, the skin friction and Nusselt number are optimum for against .","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of thermal improvement in hydrogen‐based host fluids under buoyancy force and EPNM effects: Study for vertical cylinder\",\"authors\":\"Adnan, W. Abbas, Aboulbaba Eladeb, L. Kolsi\",\"doi\":\"10.1002/zamm.202200449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nanofluids became much of interest due to their superior heat mechanism over the conventional fluids. The addition of nanoparticles in the host solvent enhances the internal ability of the liquid to store and transmit heat. Therefore, these fluids are widely used in biomedical engineering, detergents, medication, applied thermal engineering, mechanical, and chemical engineering and so forth. Keeping in mind the significance of nanofluids, this study is conducted to investigate the comparative heat transmission in and under the Effective Prandtl Number Model (EPNM) effects over a vertical permeable cylinder. Formulation of the model is carried out over a vertical cylinder about the stagnation point and the heat transport model is achieved after the successful implementation of the cylindrical stream function, nanofluids effective characteristics, and cylindrical similarity equations. The mathematical treatment was done via RK technique and furnished the results. The nanofluids have the capacity to control the fluid motion more effectively than ordinary fluid and combined convection is better where rapid fluid movement is desired. In the existence of EPNM, higher heat transmission is achieved and is prominent for based on their thermophysical values. Further, the skin friction and Nusselt number are optimum for against .\",\"PeriodicalId\":509544,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202200449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202200449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical analysis of thermal improvement in hydrogen‐based host fluids under buoyancy force and EPNM effects: Study for vertical cylinder
The nanofluids became much of interest due to their superior heat mechanism over the conventional fluids. The addition of nanoparticles in the host solvent enhances the internal ability of the liquid to store and transmit heat. Therefore, these fluids are widely used in biomedical engineering, detergents, medication, applied thermal engineering, mechanical, and chemical engineering and so forth. Keeping in mind the significance of nanofluids, this study is conducted to investigate the comparative heat transmission in and under the Effective Prandtl Number Model (EPNM) effects over a vertical permeable cylinder. Formulation of the model is carried out over a vertical cylinder about the stagnation point and the heat transport model is achieved after the successful implementation of the cylindrical stream function, nanofluids effective characteristics, and cylindrical similarity equations. The mathematical treatment was done via RK technique and furnished the results. The nanofluids have the capacity to control the fluid motion more effectively than ordinary fluid and combined convection is better where rapid fluid movement is desired. In the existence of EPNM, higher heat transmission is achieved and is prominent for based on their thermophysical values. Further, the skin friction and Nusselt number are optimum for against .