{"title":"随时间变化的域中热传导可压缩自重力流的弱解","authors":"Kuntal Bhandari, Bingkang Huang, Šárka Nečasová","doi":"10.1142/s0218202524500118","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the heat-conducting compressible self-gravitating fluids in time-dependent domains, which typically describe the motion of viscous gaseous stars. The flow is governed by the 3D Navier–Stokes–Fourier–Poisson equations where the velocity is supposed to fulfill the full-slip boundary condition and the temperature on the boundary is given by a non-homogeneous Dirichlet condition. We establish the global-in-time weak solution to the system. Our approach is based on the penalization of the boundary behavior, viscosity, and the pressure in the weak formulation. Moreover, to accommodate the non-homogeneous boundary heat flux, the concept of <i>ballistic energy</i> is utilized in this work.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"276 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak solutions to the heat conducting compressible self-gravitating flows in time-dependent domains\",\"authors\":\"Kuntal Bhandari, Bingkang Huang, Šárka Nečasová\",\"doi\":\"10.1142/s0218202524500118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the heat-conducting compressible self-gravitating fluids in time-dependent domains, which typically describe the motion of viscous gaseous stars. The flow is governed by the 3D Navier–Stokes–Fourier–Poisson equations where the velocity is supposed to fulfill the full-slip boundary condition and the temperature on the boundary is given by a non-homogeneous Dirichlet condition. We establish the global-in-time weak solution to the system. Our approach is based on the penalization of the boundary behavior, viscosity, and the pressure in the weak formulation. Moreover, to accommodate the non-homogeneous boundary heat flux, the concept of <i>ballistic energy</i> is utilized in this work.</p>\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"276 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202524500118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weak solutions to the heat conducting compressible self-gravitating flows in time-dependent domains
In this paper, we consider the heat-conducting compressible self-gravitating fluids in time-dependent domains, which typically describe the motion of viscous gaseous stars. The flow is governed by the 3D Navier–Stokes–Fourier–Poisson equations where the velocity is supposed to fulfill the full-slip boundary condition and the temperature on the boundary is given by a non-homogeneous Dirichlet condition. We establish the global-in-time weak solution to the system. Our approach is based on the penalization of the boundary behavior, viscosity, and the pressure in the weak formulation. Moreover, to accommodate the non-homogeneous boundary heat flux, the concept of ballistic energy is utilized in this work.