肠道微生物群、炎症细胞/蛋白与蛛网膜下腔出血之间的因果关系:多组学双向孟德尔随机化研究与 Meta 分析》(A Multi-omics Bidirectional Mendelian Randomization Study and Meta-analysis.

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Molecular Neurobiology Pub Date : 2024-11-01 Epub Date: 2024-03-25 DOI:10.1007/s12035-024-04101-y
Congzhi Yan, Yun Li
{"title":"肠道微生物群、炎症细胞/蛋白与蛛网膜下腔出血之间的因果关系:多组学双向孟德尔随机化研究与 Meta 分析》(A Multi-omics Bidirectional Mendelian Randomization Study and Meta-analysis.","authors":"Congzhi Yan, Yun Li","doi":"10.1007/s12035-024-04101-y","DOIUrl":null,"url":null,"abstract":"<p><p>Subarachnoid hemorrhage (SAH) is a neurological emergency that can lead to fatal outcomes. It occurs when bleeding happens in the subarachnoid space, a small gap between the arachnoid and pia mater. This condition results from the rupture of diseased or damaged blood vessels at the brain's base or surface. This study combined various omics approaches with Mendelian randomization analysis, including MR-IVW, MR Egger, MR weight median, and MR weight mode, to generate preliminary results. It also employed reverse Mendelian randomization, treating SAH as the exposure. Finally, a meta-analysis was conducted to summarize these findings. The study found positive correlations between SAH and both GBPA-Pyridoxal 5 phosphate biosynthesis I (OR=1.48, 95% CI, 1.04-2.12) and GBPA-glucose biosynthesis I (OR=0.68, 95% CI, 0.52-0.90). Increased levels of urokinase-type plasma activator were also associated with SAH (OR=1.17, 95% CI, 1.04-1.32). Associations were observed with SAH for CD80 on CD62L+ plasmacytoid dendritic cells, CD80 on plasmacytoid dendritic cells, CD123 on CD62L+ plasmacytoid dendritic cells, and SSC-A on plasmacytoid dendritic cells. This study, through Mendelian randomization and meta-analysis, established links between SAH and four inflammatory cells, one inflammatory protein, and two gut microbiota-related pathways. These findings suggest potential treatment targets for SAH, highlighting the importance of modulating gut microbiota and utilizing anti-inflammatory drugs in its management.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Relationships Between Gut Microbiota, Inflammatory Cells/Proteins, and Subarachnoid Hemorrhage: A Multi-omics Bidirectional Mendelian Randomization Study and Meta-analysis.\",\"authors\":\"Congzhi Yan, Yun Li\",\"doi\":\"10.1007/s12035-024-04101-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subarachnoid hemorrhage (SAH) is a neurological emergency that can lead to fatal outcomes. It occurs when bleeding happens in the subarachnoid space, a small gap between the arachnoid and pia mater. This condition results from the rupture of diseased or damaged blood vessels at the brain's base or surface. This study combined various omics approaches with Mendelian randomization analysis, including MR-IVW, MR Egger, MR weight median, and MR weight mode, to generate preliminary results. It also employed reverse Mendelian randomization, treating SAH as the exposure. Finally, a meta-analysis was conducted to summarize these findings. The study found positive correlations between SAH and both GBPA-Pyridoxal 5 phosphate biosynthesis I (OR=1.48, 95% CI, 1.04-2.12) and GBPA-glucose biosynthesis I (OR=0.68, 95% CI, 0.52-0.90). Increased levels of urokinase-type plasma activator were also associated with SAH (OR=1.17, 95% CI, 1.04-1.32). Associations were observed with SAH for CD80 on CD62L+ plasmacytoid dendritic cells, CD80 on plasmacytoid dendritic cells, CD123 on CD62L+ plasmacytoid dendritic cells, and SSC-A on plasmacytoid dendritic cells. This study, through Mendelian randomization and meta-analysis, established links between SAH and four inflammatory cells, one inflammatory protein, and two gut microbiota-related pathways. These findings suggest potential treatment targets for SAH, highlighting the importance of modulating gut microbiota and utilizing anti-inflammatory drugs in its management.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04101-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04101-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

蛛网膜下腔出血(SAH)是一种可导致致命后果的神经系统急症。蛛网膜下腔是蛛网膜和桥脑之间的一个小间隙,当蛛网膜下腔发生出血时就会出现这种情况。这种情况是由于大脑底部或表面病变或受损的血管破裂造成的。这项研究将各种全息方法与孟德尔随机分析相结合,包括 MR-IVW、MR Egger、MR 重量中值和 MR 重量模式,得出了初步结果。研究还采用了反向孟德尔随机分析法,将 SAH 视为暴露。最后,进行了一项荟萃分析以总结这些发现。研究发现,SAH 与 GBPA-Pyridoxal 5 phosphate biosynthesis I(OR=1.48,95% CI,1.04-2.12)和 GBPA-glucose biosynthesis I(OR=0.68,95% CI,0.52-0.90)之间存在正相关。尿激酶型血浆活化剂水平的升高也与 SAH 有关(OR=1.17,95% CI,1.04-1.32)。CD62L+浆细胞树突状细胞上的CD80、浆细胞树突状细胞上的CD80、CD62L+浆细胞树突状细胞上的CD123以及浆细胞树突状细胞上的SSC-A均与SAH相关。这项研究通过孟德尔随机化和荟萃分析,确定了 SAH 与四种炎症细胞、一种炎症蛋白和两种肠道微生物相关途径之间的联系。这些发现提出了 SAH 的潜在治疗目标,强调了调节肠道微生物群和使用抗炎药物治疗 SAH 的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Causal Relationships Between Gut Microbiota, Inflammatory Cells/Proteins, and Subarachnoid Hemorrhage: A Multi-omics Bidirectional Mendelian Randomization Study and Meta-analysis.

Causal Relationships Between Gut Microbiota, Inflammatory Cells/Proteins, and Subarachnoid Hemorrhage: A Multi-omics Bidirectional Mendelian Randomization Study and Meta-analysis.

Subarachnoid hemorrhage (SAH) is a neurological emergency that can lead to fatal outcomes. It occurs when bleeding happens in the subarachnoid space, a small gap between the arachnoid and pia mater. This condition results from the rupture of diseased or damaged blood vessels at the brain's base or surface. This study combined various omics approaches with Mendelian randomization analysis, including MR-IVW, MR Egger, MR weight median, and MR weight mode, to generate preliminary results. It also employed reverse Mendelian randomization, treating SAH as the exposure. Finally, a meta-analysis was conducted to summarize these findings. The study found positive correlations between SAH and both GBPA-Pyridoxal 5 phosphate biosynthesis I (OR=1.48, 95% CI, 1.04-2.12) and GBPA-glucose biosynthesis I (OR=0.68, 95% CI, 0.52-0.90). Increased levels of urokinase-type plasma activator were also associated with SAH (OR=1.17, 95% CI, 1.04-1.32). Associations were observed with SAH for CD80 on CD62L+ plasmacytoid dendritic cells, CD80 on plasmacytoid dendritic cells, CD123 on CD62L+ plasmacytoid dendritic cells, and SSC-A on plasmacytoid dendritic cells. This study, through Mendelian randomization and meta-analysis, established links between SAH and four inflammatory cells, one inflammatory protein, and two gut microbiota-related pathways. These findings suggest potential treatment targets for SAH, highlighting the importance of modulating gut microbiota and utilizing anti-inflammatory drugs in its management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信