{"title":"睾酮可促进体外粒细胞-巨噬细胞集落刺激因子(GM-CSF)诱导的青春期前小鼠精原细胞成熟。","authors":"Areej Jorban, Eitan Lunenfeld, Mahmoud Huleihel","doi":"10.1684/ecn.2023.0490","DOIUrl":null,"url":null,"abstract":"<p><p>Spermatogenesis is the complicated process of sperm generation. During this process, spermatogonial cells proliferate and differentiate via meiotic and post-meiotic stages to produce mature sperm. This process is under the regulation of testicular autocrine/paracrine factors. In addition, endocrine factors are crucial to complete spermatogenesis. We aimed to localize granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor (GM-CSFR) in testicular cells and further evaluate its involvement in the development of spermatogenesis in vitro. We isolated cells from seminiferous tubule cells of seven-day-old mice and cultured them in vitro using a methylcellulose culture system (MCS), in the presence of GM-CSF and/or testosterone for four weeks. The cells were then examined for markers of different stages of spermatogenesis by immunofluorescence staining and/or qPCR analyses. Our results revealed the presence of GM-CSF and GM-CSFR in testicular cells (premeiotic and meiotic cells as well as somatic cells; Leydig and Sertoli cells). We further demonstrated the development of colonies/spheroids in the MCS which contained pre-meiotic, meiotic, and post-meiotic cells. The addition of GM-CSF to the MCS significantly increased the percentage of pre-meiotic and meiotic cells compared to control. Furthermore, the addition of GM-CSF and testosterone together significantly increased the percentage of cells in the post-meiotic stage compared to the addition of each separately. In conclusion, our results indicate that testicular cells express GM-CSF/GM-CSFR, and that GM-CSF is involved in the development of different stages of spermatogenesis in vitro. Furthermore, testosterone enhances the development of spermatogenic cells and potentiates the effect of GMCSF on the development of post-meiotic cells. These findings provide evidence that GM-CSF and testosterone are involved in the development of spermatogenesis in vitro and in vivo. In brief: Testicular somatic and germ cells express GM-CSF and GM-CSFR. Our study suggests that testicular GM-CSF is involved in the development of spermatogenesis, which is potentiated by testosterone.</p>","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"34 4","pages":"54-62"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced maturation of spermatogonial cells from prepubertal mice in vitro is enhanced by testosterone.\",\"authors\":\"Areej Jorban, Eitan Lunenfeld, Mahmoud Huleihel\",\"doi\":\"10.1684/ecn.2023.0490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spermatogenesis is the complicated process of sperm generation. During this process, spermatogonial cells proliferate and differentiate via meiotic and post-meiotic stages to produce mature sperm. This process is under the regulation of testicular autocrine/paracrine factors. In addition, endocrine factors are crucial to complete spermatogenesis. We aimed to localize granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor (GM-CSFR) in testicular cells and further evaluate its involvement in the development of spermatogenesis in vitro. We isolated cells from seminiferous tubule cells of seven-day-old mice and cultured them in vitro using a methylcellulose culture system (MCS), in the presence of GM-CSF and/or testosterone for four weeks. The cells were then examined for markers of different stages of spermatogenesis by immunofluorescence staining and/or qPCR analyses. Our results revealed the presence of GM-CSF and GM-CSFR in testicular cells (premeiotic and meiotic cells as well as somatic cells; Leydig and Sertoli cells). We further demonstrated the development of colonies/spheroids in the MCS which contained pre-meiotic, meiotic, and post-meiotic cells. The addition of GM-CSF to the MCS significantly increased the percentage of pre-meiotic and meiotic cells compared to control. Furthermore, the addition of GM-CSF and testosterone together significantly increased the percentage of cells in the post-meiotic stage compared to the addition of each separately. In conclusion, our results indicate that testicular cells express GM-CSF/GM-CSFR, and that GM-CSF is involved in the development of different stages of spermatogenesis in vitro. Furthermore, testosterone enhances the development of spermatogenic cells and potentiates the effect of GMCSF on the development of post-meiotic cells. These findings provide evidence that GM-CSF and testosterone are involved in the development of spermatogenesis in vitro and in vivo. In brief: Testicular somatic and germ cells express GM-CSF and GM-CSFR. Our study suggests that testicular GM-CSF is involved in the development of spermatogenesis, which is potentiated by testosterone.</p>\",\"PeriodicalId\":11749,\"journal\":{\"name\":\"European cytokine network\",\"volume\":\"34 4\",\"pages\":\"54-62\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European cytokine network\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1684/ecn.2023.0490\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cytokine network","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/ecn.2023.0490","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced maturation of spermatogonial cells from prepubertal mice in vitro is enhanced by testosterone.
Spermatogenesis is the complicated process of sperm generation. During this process, spermatogonial cells proliferate and differentiate via meiotic and post-meiotic stages to produce mature sperm. This process is under the regulation of testicular autocrine/paracrine factors. In addition, endocrine factors are crucial to complete spermatogenesis. We aimed to localize granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor (GM-CSFR) in testicular cells and further evaluate its involvement in the development of spermatogenesis in vitro. We isolated cells from seminiferous tubule cells of seven-day-old mice and cultured them in vitro using a methylcellulose culture system (MCS), in the presence of GM-CSF and/or testosterone for four weeks. The cells were then examined for markers of different stages of spermatogenesis by immunofluorescence staining and/or qPCR analyses. Our results revealed the presence of GM-CSF and GM-CSFR in testicular cells (premeiotic and meiotic cells as well as somatic cells; Leydig and Sertoli cells). We further demonstrated the development of colonies/spheroids in the MCS which contained pre-meiotic, meiotic, and post-meiotic cells. The addition of GM-CSF to the MCS significantly increased the percentage of pre-meiotic and meiotic cells compared to control. Furthermore, the addition of GM-CSF and testosterone together significantly increased the percentage of cells in the post-meiotic stage compared to the addition of each separately. In conclusion, our results indicate that testicular cells express GM-CSF/GM-CSFR, and that GM-CSF is involved in the development of different stages of spermatogenesis in vitro. Furthermore, testosterone enhances the development of spermatogenic cells and potentiates the effect of GMCSF on the development of post-meiotic cells. These findings provide evidence that GM-CSF and testosterone are involved in the development of spermatogenesis in vitro and in vivo. In brief: Testicular somatic and germ cells express GM-CSF and GM-CSFR. Our study suggests that testicular GM-CSF is involved in the development of spermatogenesis, which is potentiated by testosterone.
期刊介绍:
The journal that brings together all areas of work involving cytokines.
European Cytokine Network is an electronic journal that publishes original articles and abstracts every quarter to provide an essential bridge between researchers and clinicians with an interest in this cutting-edge field.
The journal has become a must-read for specialists in the field thanks to its swift publication and international circulation.
The journal is referenced in several databases, including Medline, which is testament to its scientific quality.