多维路径依赖选项的深度签名算法

IF 1.4 4区 经济学 Q3 BUSINESS, FINANCE
Erhan Bayraktar, Qi Feng, Zhaoyu Zhang
{"title":"多维路径依赖选项的深度签名算法","authors":"Erhan Bayraktar, Qi Feng, Zhaoyu Zhang","doi":"10.1137/23m1571563","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page 194-214, March 2024. <br/> Abstract. In this work, we study the deep signature algorithms for path-dependent options. We extend the backward scheme in [C. Huré, H. Pham, and X. Warin, Math. Comp., 89 (2020), pp. 1547–1579] for state-dependent FBSDEs with reflections to path-dependent FBSDEs with reflections, by adding the signature layer to the backward scheme. Our algorithm applies to both European and American type option pricing problems, while the payoff function depends on the whole paths of the underlying forward stock process. We prove the convergence analysis of our numerical algorithm with explicit dependence on the truncation order of the signature and the neural network approximation errors. Numerical examples for the algorithm are provided, including Amerasian option under the Black–Scholes model, American option with a path-dependent geometric mean payoff function, and Shiryaev’s optimal stopping problem.","PeriodicalId":48880,"journal":{"name":"SIAM Journal on Financial Mathematics","volume":"23 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Signature Algorithm for Multidimensional Path-Dependent Options\",\"authors\":\"Erhan Bayraktar, Qi Feng, Zhaoyu Zhang\",\"doi\":\"10.1137/23m1571563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page 194-214, March 2024. <br/> Abstract. In this work, we study the deep signature algorithms for path-dependent options. We extend the backward scheme in [C. Huré, H. Pham, and X. Warin, Math. Comp., 89 (2020), pp. 1547–1579] for state-dependent FBSDEs with reflections to path-dependent FBSDEs with reflections, by adding the signature layer to the backward scheme. Our algorithm applies to both European and American type option pricing problems, while the payoff function depends on the whole paths of the underlying forward stock process. We prove the convergence analysis of our numerical algorithm with explicit dependence on the truncation order of the signature and the neural network approximation errors. Numerical examples for the algorithm are provided, including Amerasian option under the Black–Scholes model, American option with a path-dependent geometric mean payoff function, and Shiryaev’s optimal stopping problem.\",\"PeriodicalId\":48880,\"journal\":{\"name\":\"SIAM Journal on Financial Mathematics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Financial Mathematics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1571563\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Financial Mathematics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1137/23m1571563","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 金融数学期刊》,第 15 卷第 1 期,第 194-214 页,2024 年 3 月。 摘要在这项工作中,我们研究了路径依赖期权的深度签名算法。我们将 [C. Huré, H. Pham, and X. Warin, Math. Comp., 89 (2020), pp.我们的算法既适用于欧式期权定价问题,也适用于美式期权定价问题。我们证明了数值算法的收敛性分析,它明确依赖于签名的截断阶数和神经网络近似误差。我们还提供了算法的数值示例,包括布莱克-斯科尔斯模型下的美式期权、具有路径依赖几何平均报酬函数的美式期权以及 Shiryaev 的最优停止问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Signature Algorithm for Multidimensional Path-Dependent Options
SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page 194-214, March 2024.
Abstract. In this work, we study the deep signature algorithms for path-dependent options. We extend the backward scheme in [C. Huré, H. Pham, and X. Warin, Math. Comp., 89 (2020), pp. 1547–1579] for state-dependent FBSDEs with reflections to path-dependent FBSDEs with reflections, by adding the signature layer to the backward scheme. Our algorithm applies to both European and American type option pricing problems, while the payoff function depends on the whole paths of the underlying forward stock process. We prove the convergence analysis of our numerical algorithm with explicit dependence on the truncation order of the signature and the neural network approximation errors. Numerical examples for the algorithm are provided, including Amerasian option under the Black–Scholes model, American option with a path-dependent geometric mean payoff function, and Shiryaev’s optimal stopping problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.30
自引率
10.00%
发文量
52
期刊介绍: SIAM Journal on Financial Mathematics (SIFIN) addresses theoretical developments in financial mathematics as well as breakthroughs in the computational challenges they encompass. The journal provides a common platform for scholars interested in the mathematical theory of finance as well as practitioners interested in rigorous treatments of the scientific computational issues related to implementation. On the theoretical side, the journal publishes articles with demonstrable mathematical developments motivated by models of modern finance. On the computational side, it publishes articles introducing new methods and algorithms representing significant (as opposed to incremental) improvements on the existing state of affairs of modern numerical implementations of applied financial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信