离散超循环中功能偏移引发的退化跨临界 Neimark-Sacker 分岔

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ernest Fontich, Antoni Guillamon, Júlia Perona, Josep Sardanyés
{"title":"离散超循环中功能偏移引发的退化跨临界 Neimark-Sacker 分岔","authors":"Ernest Fontich, Antoni Guillamon, Júlia Perona, Josep Sardanyés","doi":"10.1142/s0218127424500457","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the impact of functional shifts in a time-discrete cross-catalytic system. We use the hypercycle model considering that one of the species shifts from a cooperator to a degrader. At the bifurcation caused by this functional shift, an invariant curve collapses to a point <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi></math></span><span></span> while, simultaneously, two fixed points collide with <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi></math></span><span></span> in a transcritical bifurcation. Moreover, all points of a line containing <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi></math></span><span></span> become fixed points at the bifurcation and only at the bifurcation in a degenerate scenario. We provide a complete analytical description of this degenerate bifurcation. As a result of our study, we prove the existence of the invariant curve arising from the transition to cooperation.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Shift-Induced Degenerate Transcritical Neimark–Sacker Bifurcation in a Discrete Hypercycle\",\"authors\":\"Ernest Fontich, Antoni Guillamon, Júlia Perona, Josep Sardanyés\",\"doi\":\"10.1142/s0218127424500457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the impact of functional shifts in a time-discrete cross-catalytic system. We use the hypercycle model considering that one of the species shifts from a cooperator to a degrader. At the bifurcation caused by this functional shift, an invariant curve collapses to a point <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>P</mi></math></span><span></span> while, simultaneously, two fixed points collide with <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>P</mi></math></span><span></span> in a transcritical bifurcation. Moreover, all points of a line containing <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>P</mi></math></span><span></span> become fixed points at the bifurcation and only at the bifurcation in a degenerate scenario. We provide a complete analytical description of this degenerate bifurcation. As a result of our study, we prove the existence of the invariant curve arising from the transition to cooperation.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500457\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500457","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了时间离散交叉催化系统中功能转变的影响。我们使用超循环模型,考虑到其中一个物种从合作者转变为降解者。在由这种功能转变引起的分岔处,一条不变曲线塌缩到一个点 P,同时,两个固定点与 P 碰撞,发生跨临界分岔。此外,包含 P 的直线上的所有点都会在分岔处成为固定点,而且只有在退化情况下的分岔处才会成为固定点。我们对这种退化分岔进行了完整的分析描述。通过研究,我们证明了过渡到合作所产生的不变曲线的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional Shift-Induced Degenerate Transcritical Neimark–Sacker Bifurcation in a Discrete Hypercycle

In this paper, we investigate the impact of functional shifts in a time-discrete cross-catalytic system. We use the hypercycle model considering that one of the species shifts from a cooperator to a degrader. At the bifurcation caused by this functional shift, an invariant curve collapses to a point P while, simultaneously, two fixed points collide with P in a transcritical bifurcation. Moreover, all points of a line containing P become fixed points at the bifurcation and only at the bifurcation in a degenerate scenario. We provide a complete analytical description of this degenerate bifurcation. As a result of our study, we prove the existence of the invariant curve arising from the transition to cooperation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信