Atefeh Ahmadi, Sridevi Sriram, Ahmed M. Ali Ali, Karthikeyan Rajagopal, Nikhil Pal, Sajad Jafari
{"title":"带菱形振荡器的非线性巨稳系统","authors":"Atefeh Ahmadi, Sridevi Sriram, Ahmed M. Ali Ali, Karthikeyan Rajagopal, Nikhil Pal, Sajad Jafari","doi":"10.1142/s0218127424500536","DOIUrl":null,"url":null,"abstract":"<p>Benefiting from trigonometric and hyperbolic functions, a nonlinear megastable chaotic system is reported in this paper. Its nonlinear equations without linear terms make the system dynamics much more complex. Its coexisting attractors’ shape is diamond-like; thus, this system is said to have diamond-shaped oscillators. State space and time series plots show the existence of coexisting chaotic attractors. The autonomous version of this system was studied previously. Inspired by the former work and applying a forcing term to this system, its dynamics are studied. All forcing term parameters’ impacts are investigated alongside the initial condition-dependent behaviors to confirm the system’s megastability. The dynamical analysis utilizes one-dimensional and two-dimensional bifurcation diagrams, Lyapunov exponents, Kaplan–Yorke dimension, and attraction basin. Because of this system’s megastability, the one-dimensional bifurcation diagrams and Kaplan–Yorke dimension are plotted with three distinct initial conditions. Its analog circuit is simulated in the OrCAD environment to confirm the numerical simulations’ correctness.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nonlinear Megastable System with Diamond-Shaped Oscillators\",\"authors\":\"Atefeh Ahmadi, Sridevi Sriram, Ahmed M. Ali Ali, Karthikeyan Rajagopal, Nikhil Pal, Sajad Jafari\",\"doi\":\"10.1142/s0218127424500536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Benefiting from trigonometric and hyperbolic functions, a nonlinear megastable chaotic system is reported in this paper. Its nonlinear equations without linear terms make the system dynamics much more complex. Its coexisting attractors’ shape is diamond-like; thus, this system is said to have diamond-shaped oscillators. State space and time series plots show the existence of coexisting chaotic attractors. The autonomous version of this system was studied previously. Inspired by the former work and applying a forcing term to this system, its dynamics are studied. All forcing term parameters’ impacts are investigated alongside the initial condition-dependent behaviors to confirm the system’s megastability. The dynamical analysis utilizes one-dimensional and two-dimensional bifurcation diagrams, Lyapunov exponents, Kaplan–Yorke dimension, and attraction basin. Because of this system’s megastability, the one-dimensional bifurcation diagrams and Kaplan–Yorke dimension are plotted with three distinct initial conditions. Its analog circuit is simulated in the OrCAD environment to confirm the numerical simulations’ correctness.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500536\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500536","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Nonlinear Megastable System with Diamond-Shaped Oscillators
Benefiting from trigonometric and hyperbolic functions, a nonlinear megastable chaotic system is reported in this paper. Its nonlinear equations without linear terms make the system dynamics much more complex. Its coexisting attractors’ shape is diamond-like; thus, this system is said to have diamond-shaped oscillators. State space and time series plots show the existence of coexisting chaotic attractors. The autonomous version of this system was studied previously. Inspired by the former work and applying a forcing term to this system, its dynamics are studied. All forcing term parameters’ impacts are investigated alongside the initial condition-dependent behaviors to confirm the system’s megastability. The dynamical analysis utilizes one-dimensional and two-dimensional bifurcation diagrams, Lyapunov exponents, Kaplan–Yorke dimension, and attraction basin. Because of this system’s megastability, the one-dimensional bifurcation diagrams and Kaplan–Yorke dimension are plotted with three distinct initial conditions. Its analog circuit is simulated in the OrCAD environment to confirm the numerical simulations’ correctness.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.