{"title":"利用汉克尔准则近似和数据驱动算法进行降序建模","authors":"Annan Yu, Alex Townsend","doi":"10.1002/nla.2555","DOIUrl":null,"url":null,"abstract":"SummaryLarge‐scale linear time‐invariant (LTI) dynamical systems are widely used to characterize complicated physical phenomena. Glover developed the Hankel norm approximation (HNA) algorithm for optimally reducing the system in the Hankel norm, and we study its numerical issues. We provide a remedy for the numerical instabilities of Glover's HNA algorithm caused by clustered singular values. We analyze the effect of our modification on the degree and the Hankel error of the reduced system. Moreover, we propose a two‐stage framework to reduce the order of a large‐scale LTI system given samples of its transfer function for a target degree of the reduced system. It combines the adaptive Antoulas–Anderson (AAA) algorithm, modified to produce an intermediate LTI system in a numerically stable way, and the modified HNA algorithm. A carefully computed rational approximation of an adaptively chosen degree gives us an algorithm for reducing an LTI system, which achieves a balance between speed and accuracy.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging the Hankel norm approximation and data‐driven algorithms in reduced order modeling\",\"authors\":\"Annan Yu, Alex Townsend\",\"doi\":\"10.1002/nla.2555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryLarge‐scale linear time‐invariant (LTI) dynamical systems are widely used to characterize complicated physical phenomena. Glover developed the Hankel norm approximation (HNA) algorithm for optimally reducing the system in the Hankel norm, and we study its numerical issues. We provide a remedy for the numerical instabilities of Glover's HNA algorithm caused by clustered singular values. We analyze the effect of our modification on the degree and the Hankel error of the reduced system. Moreover, we propose a two‐stage framework to reduce the order of a large‐scale LTI system given samples of its transfer function for a target degree of the reduced system. It combines the adaptive Antoulas–Anderson (AAA) algorithm, modified to produce an intermediate LTI system in a numerically stable way, and the modified HNA algorithm. A carefully computed rational approximation of an adaptively chosen degree gives us an algorithm for reducing an LTI system, which achieves a balance between speed and accuracy.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2555\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2555","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Leveraging the Hankel norm approximation and data‐driven algorithms in reduced order modeling
SummaryLarge‐scale linear time‐invariant (LTI) dynamical systems are widely used to characterize complicated physical phenomena. Glover developed the Hankel norm approximation (HNA) algorithm for optimally reducing the system in the Hankel norm, and we study its numerical issues. We provide a remedy for the numerical instabilities of Glover's HNA algorithm caused by clustered singular values. We analyze the effect of our modification on the degree and the Hankel error of the reduced system. Moreover, we propose a two‐stage framework to reduce the order of a large‐scale LTI system given samples of its transfer function for a target degree of the reduced system. It combines the adaptive Antoulas–Anderson (AAA) algorithm, modified to produce an intermediate LTI system in a numerically stable way, and the modified HNA algorithm. A carefully computed rational approximation of an adaptively chosen degree gives us an algorithm for reducing an LTI system, which achieves a balance between speed and accuracy.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.