伯克霍夫-詹姆斯正交性的数值范围方法及其应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"伯克霍夫-詹姆斯正交性的数值范围方法及其应用","authors":"","doi":"10.1007/s43037-024-00333-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The main aim of this paper is to provide characterizations of Birkhoff–James orthogonality (BJ-orthogonality in short) in a number of families of Banach spaces in terms of the elements of significant subsets of the unit ball of their dual spaces, which makes the characterizations more applicable. The tool to do so is a fine study of the abstract numerical range and its relation with the BJ-orthogonality. Among other results, we provide a characterization of BJ-orthogonality for spaces of vector-valued bounded functions in terms of the domain set and the dual of the target space, which is applied to get results for spaces of vector-valued continuous functions, uniform algebras, Lipschitz maps, injective tensor products, bounded linear operators with respect to the operator norm and to the numerical radius, multilinear maps, and polynomials. Next, we study possible extensions of the well-known Bhatia–Šemrl theorem on BJ-orthogonality of matrices, showing results in spaces of vector-valued continuous functions, compact linear operators on reflexive spaces, and finite Blaschke products. Finally, we find applications of our results to the study of spear vectors and spear operators. We show that no smooth point of a Banach space can be BJ-orthogonal to a spear vector of <em>Z</em>. As a consequence, if <em>X</em> is a Banach space containing strongly exposed points and <em>Y</em> is a smooth Banach space with dimension at least two, then there are no spear operators from <em>X</em> to <em>Y</em>. Particularizing this result to the identity operator, we show that a smooth Banach space containing strongly exposed points has numerical index strictly smaller than one. These latter results partially solve some open problems.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical range approach to Birkhoff–James orthogonality with applications\",\"authors\":\"\",\"doi\":\"10.1007/s43037-024-00333-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The main aim of this paper is to provide characterizations of Birkhoff–James orthogonality (BJ-orthogonality in short) in a number of families of Banach spaces in terms of the elements of significant subsets of the unit ball of their dual spaces, which makes the characterizations more applicable. The tool to do so is a fine study of the abstract numerical range and its relation with the BJ-orthogonality. Among other results, we provide a characterization of BJ-orthogonality for spaces of vector-valued bounded functions in terms of the domain set and the dual of the target space, which is applied to get results for spaces of vector-valued continuous functions, uniform algebras, Lipschitz maps, injective tensor products, bounded linear operators with respect to the operator norm and to the numerical radius, multilinear maps, and polynomials. Next, we study possible extensions of the well-known Bhatia–Šemrl theorem on BJ-orthogonality of matrices, showing results in spaces of vector-valued continuous functions, compact linear operators on reflexive spaces, and finite Blaschke products. Finally, we find applications of our results to the study of spear vectors and spear operators. We show that no smooth point of a Banach space can be BJ-orthogonal to a spear vector of <em>Z</em>. As a consequence, if <em>X</em> is a Banach space containing strongly exposed points and <em>Y</em> is a smooth Banach space with dimension at least two, then there are no spear operators from <em>X</em> to <em>Y</em>. Particularizing this result to the identity operator, we show that a smooth Banach space containing strongly exposed points has numerical index strictly smaller than one. These latter results partially solve some open problems.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00333-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00333-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文的主要目的是根据巴拿赫空间对偶空间的单位球的重要子集的元素,提供一些巴拿赫空间族的伯克霍夫-詹姆斯正交性(简称 BJ 正交性)的特征,从而使这些特征更加适用。为此,我们对抽象数值范围及其与 BJ 正交性的关系进行了深入研究。除其他结果外,我们还从域集和目标空间对偶的角度提供了矢量有界函数空间的 BJ 正交性特征,并将其应用于矢量有界连续函数空间、均匀代数、Lipschitz 映射、注入张量积、关于算子规范和数值半径的有界线性算子、多线性映射和多项式的结果。接下来,我们研究了著名的关于矩阵 BJ 正交性的巴蒂亚-塞姆尔(Bhatia-Šemrl)定理的可能扩展,展示了在有向量值的连续函数空间、反身空间上的紧凑线性算子和有限布拉什克积中的结果。最后,我们发现了我们的结果在矛向量和矛算子研究中的应用。因此,如果 X 是包含强暴露点的巴拿赫空间,而 Y 是维数至少为 2 的光滑巴拿赫空间,那么就不存在从 X 到 Y 的矛算子。后面这些结果部分地解决了一些悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical range approach to Birkhoff–James orthogonality with applications

Abstract

The main aim of this paper is to provide characterizations of Birkhoff–James orthogonality (BJ-orthogonality in short) in a number of families of Banach spaces in terms of the elements of significant subsets of the unit ball of their dual spaces, which makes the characterizations more applicable. The tool to do so is a fine study of the abstract numerical range and its relation with the BJ-orthogonality. Among other results, we provide a characterization of BJ-orthogonality for spaces of vector-valued bounded functions in terms of the domain set and the dual of the target space, which is applied to get results for spaces of vector-valued continuous functions, uniform algebras, Lipschitz maps, injective tensor products, bounded linear operators with respect to the operator norm and to the numerical radius, multilinear maps, and polynomials. Next, we study possible extensions of the well-known Bhatia–Šemrl theorem on BJ-orthogonality of matrices, showing results in spaces of vector-valued continuous functions, compact linear operators on reflexive spaces, and finite Blaschke products. Finally, we find applications of our results to the study of spear vectors and spear operators. We show that no smooth point of a Banach space can be BJ-orthogonal to a spear vector of Z. As a consequence, if X is a Banach space containing strongly exposed points and Y is a smooth Banach space with dimension at least two, then there are no spear operators from X to Y. Particularizing this result to the identity operator, we show that a smooth Banach space containing strongly exposed points has numerical index strictly smaller than one. These latter results partially solve some open problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信