无规范基属性的有限莫利秩环

IF 0.9 1区 数学 Q1 LOGIC
Michael Loesch, Daniel Palacín
{"title":"无规范基属性的有限莫利秩环","authors":"Michael Loesch, Daniel Palacín","doi":"10.1142/s0219061324500168","DOIUrl":null,"url":null,"abstract":"<p>We present numerous natural algebraic examples without the so-called Canonical Base Property (CBP). We prove that every commutative unitary ring of finite Morley rank without finite-index proper ideals satisfies the CBP if and only if it is a field, a ring of positive characteristic or a finite direct product of these. In addition, we construct a CM-trivial commutative local ring with a finite residue field without the CBP. Furthermore, we also show that finite-dimensional non-associative algebras over an algebraically closed field of characteristic <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn></math></span><span></span> give rise to triangular rings without the CBP. This also applies to Baudisch’s <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span>-step nilpotent Lie algebras, which yields the existence of a <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span>-step nilpotent group of finite Morley rank whose theory, in the pure language of groups, is CM-trivial and does not satisfy the CBP.</p>","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"14 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rings of finite Morley rank without the canonical base property\",\"authors\":\"Michael Loesch, Daniel Palacín\",\"doi\":\"10.1142/s0219061324500168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present numerous natural algebraic examples without the so-called Canonical Base Property (CBP). We prove that every commutative unitary ring of finite Morley rank without finite-index proper ideals satisfies the CBP if and only if it is a field, a ring of positive characteristic or a finite direct product of these. In addition, we construct a CM-trivial commutative local ring with a finite residue field without the CBP. Furthermore, we also show that finite-dimensional non-associative algebras over an algebraically closed field of characteristic <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>0</mn></math></span><span></span> give rise to triangular rings without the CBP. This also applies to Baudisch’s <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn></math></span><span></span>-step nilpotent Lie algebras, which yields the existence of a <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn></math></span><span></span>-step nilpotent group of finite Morley rank whose theory, in the pure language of groups, is CM-trivial and does not satisfy the CBP.</p>\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219061324500168\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061324500168","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了许多没有所谓 "典型基属性(CBP)"的自然代数例子。我们证明,当且仅当它是一个域、一个正特征环或它们的有限直积时,每个有限莫里秩的交换单元环都满足 CBP,而它没有有限索引的专有理想。此外,我们还构造了一个具有有限残差域且不满足 CBP 的 CM 三重交换局部环。此外,我们还证明了在特征为 0 的代数闭域上的有限维非共轭代数会产生没有 CBP 的三角环。这也适用于鲍迪什的二阶零势列代数,从而得出存在一个有限莫利秩的二阶零势群,其理论在纯群语言中是 CM-三维的,不满足 CBP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rings of finite Morley rank without the canonical base property

We present numerous natural algebraic examples without the so-called Canonical Base Property (CBP). We prove that every commutative unitary ring of finite Morley rank without finite-index proper ideals satisfies the CBP if and only if it is a field, a ring of positive characteristic or a finite direct product of these. In addition, we construct a CM-trivial commutative local ring with a finite residue field without the CBP. Furthermore, we also show that finite-dimensional non-associative algebras over an algebraically closed field of characteristic 0 give rise to triangular rings without the CBP. This also applies to Baudisch’s 2-step nilpotent Lie algebras, which yields the existence of a 2-step nilpotent group of finite Morley rank whose theory, in the pure language of groups, is CM-trivial and does not satisfy the CBP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信