与切比雪夫多项式相关的最小矩阵的一些结果

Pub Date : 2024-03-20 DOI:10.1093/jigpal/jzae028
Fatih Yilmaz, Samet Arpaci, Aybüke Ertaş
{"title":"与切比雪夫多项式相关的最小矩阵的一些结果","authors":"Fatih Yilmaz, Samet Arpaci, Aybüke Ertaş","doi":"10.1093/jigpal/jzae028","DOIUrl":null,"url":null,"abstract":"In the present study, inspired by the studies in the literature, we consider Min matrix and its Hadamard exponential matrix family whose elements are Chebyshev polynomials of the first kind. Afterwards, we examine their various linear algebraic properties and obtain some inequalities. Furthermore, we shed light on the results we obtained to boost the clarity of our paper with the illustrative examples. In addition to all these, we give two MATLAB-R2023a codes that compute the Min matrix and the Hadamard exponential matrix with Chebyshev polynomials of the first kind entries, as well as calculate some matrix norms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results for min matrices associated with Chebyshev polynomials\",\"authors\":\"Fatih Yilmaz, Samet Arpaci, Aybüke Ertaş\",\"doi\":\"10.1093/jigpal/jzae028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, inspired by the studies in the literature, we consider Min matrix and its Hadamard exponential matrix family whose elements are Chebyshev polynomials of the first kind. Afterwards, we examine their various linear algebraic properties and obtain some inequalities. Furthermore, we shed light on the results we obtained to boost the clarity of our paper with the illustrative examples. In addition to all these, we give two MATLAB-R2023a codes that compute the Min matrix and the Hadamard exponential matrix with Chebyshev polynomials of the first kind entries, as well as calculate some matrix norms.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,受文献研究的启发,我们考虑了 Min 矩阵及其哈达玛指数矩阵族,它们的元素是切比雪夫多项式的第一种。随后,我们研究了它们的各种线性代数性质,并得到了一些不等式。此外,我们还通过举例说明来阐明我们所获得的结果,以提高论文的清晰度。除此之外,我们还给出了两个 MATLAB-R2023a 代码,用于计算带有切比雪夫多项式第一类项的 Min 矩阵和 Hadamard 指数矩阵,以及计算一些矩阵规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some results for min matrices associated with Chebyshev polynomials
In the present study, inspired by the studies in the literature, we consider Min matrix and its Hadamard exponential matrix family whose elements are Chebyshev polynomials of the first kind. Afterwards, we examine their various linear algebraic properties and obtain some inequalities. Furthermore, we shed light on the results we obtained to boost the clarity of our paper with the illustrative examples. In addition to all these, we give two MATLAB-R2023a codes that compute the Min matrix and the Hadamard exponential matrix with Chebyshev polynomials of the first kind entries, as well as calculate some matrix norms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信