使用 MQTT 协议对物联网设备网络中的入侵检测进行贝塔海比学习

Pub Date : 2024-03-22 DOI:10.1093/jigpal/jzae013
Álvaro Michelena, María Teresa García Ordás, José Aveleira-Mata, David Yeregui Marcos del Blanco, Míriam Timiraos Díaz, Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, Héctor Alaiz-Moretón, José Luis Calvo-Rolle
{"title":"使用 MQTT 协议对物联网设备网络中的入侵检测进行贝塔海比学习","authors":"Álvaro Michelena, María Teresa García Ordás, José Aveleira-Mata, David Yeregui Marcos del Blanco, Míriam Timiraos Díaz, Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, Héctor Alaiz-Moretón, José Luis Calvo-Rolle","doi":"10.1093/jigpal/jzae013","DOIUrl":null,"url":null,"abstract":"This paper aims to enhance security in IoT device networks through a visual tool that utilizes three projection techniques, including Beta Hebbian Learning (BHL), t-distributed Stochastic Neighbor Embedding (t-SNE) and ISOMAP, in order to facilitate the identification of network attacks by human experts. This work research begins with the creation of a testing environment with IoT devices and web clients, simulating attacks over Message Queuing Telemetry Transport (MQTT) for recording all relevant traffic information. The unsupervised algorithms chosen provide a set of projections that enable human experts to visually identify most attacks in real-time, making it a powerful tool that can be implemented in IoT environments easily.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beta Hebbian Learning for intrusion detection in networks with MQTT Protocols for IoT devices\",\"authors\":\"Álvaro Michelena, María Teresa García Ordás, José Aveleira-Mata, David Yeregui Marcos del Blanco, Míriam Timiraos Díaz, Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, Héctor Alaiz-Moretón, José Luis Calvo-Rolle\",\"doi\":\"10.1093/jigpal/jzae013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to enhance security in IoT device networks through a visual tool that utilizes three projection techniques, including Beta Hebbian Learning (BHL), t-distributed Stochastic Neighbor Embedding (t-SNE) and ISOMAP, in order to facilitate the identification of network attacks by human experts. This work research begins with the creation of a testing environment with IoT devices and web clients, simulating attacks over Message Queuing Telemetry Transport (MQTT) for recording all relevant traffic information. The unsupervised algorithms chosen provide a set of projections that enable human experts to visually identify most attacks in real-time, making it a powerful tool that can be implemented in IoT environments easily.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在通过一种可视化工具,利用 Beta Hebbian Learning(BHL)、t-distributed Stochastic Neighbor Embedding(t-SNE)和 ISOMAP 等三种投影技术,提高物联网设备网络的安全性,以方便人类专家识别网络攻击。这项研究工作首先创建了一个带有物联网设备和网络客户端的测试环境,通过消息队列遥测传输(MQTT)模拟攻击,记录所有相关流量信息。所选的无监督算法提供了一组预测,使人类专家能够实时直观地识别大多数攻击,从而使其成为一种可在物联网环境中轻松实施的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Beta Hebbian Learning for intrusion detection in networks with MQTT Protocols for IoT devices
This paper aims to enhance security in IoT device networks through a visual tool that utilizes three projection techniques, including Beta Hebbian Learning (BHL), t-distributed Stochastic Neighbor Embedding (t-SNE) and ISOMAP, in order to facilitate the identification of network attacks by human experts. This work research begins with the creation of a testing environment with IoT devices and web clients, simulating attacks over Message Queuing Telemetry Transport (MQTT) for recording all relevant traffic information. The unsupervised algorithms chosen provide a set of projections that enable human experts to visually identify most attacks in real-time, making it a powerful tool that can be implemented in IoT environments easily.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信