Álvaro Michelena, María Teresa García Ordás, José Aveleira-Mata, David Yeregui Marcos del Blanco, Míriam Timiraos Díaz, Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, Héctor Alaiz-Moretón, José Luis Calvo-Rolle
{"title":"使用 MQTT 协议对物联网设备网络中的入侵检测进行贝塔海比学习","authors":"Álvaro Michelena, María Teresa García Ordás, José Aveleira-Mata, David Yeregui Marcos del Blanco, Míriam Timiraos Díaz, Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, Héctor Alaiz-Moretón, José Luis Calvo-Rolle","doi":"10.1093/jigpal/jzae013","DOIUrl":null,"url":null,"abstract":"This paper aims to enhance security in IoT device networks through a visual tool that utilizes three projection techniques, including Beta Hebbian Learning (BHL), t-distributed Stochastic Neighbor Embedding (t-SNE) and ISOMAP, in order to facilitate the identification of network attacks by human experts. This work research begins with the creation of a testing environment with IoT devices and web clients, simulating attacks over Message Queuing Telemetry Transport (MQTT) for recording all relevant traffic information. The unsupervised algorithms chosen provide a set of projections that enable human experts to visually identify most attacks in real-time, making it a powerful tool that can be implemented in IoT environments easily.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beta Hebbian Learning for intrusion detection in networks with MQTT Protocols for IoT devices\",\"authors\":\"Álvaro Michelena, María Teresa García Ordás, José Aveleira-Mata, David Yeregui Marcos del Blanco, Míriam Timiraos Díaz, Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, Héctor Alaiz-Moretón, José Luis Calvo-Rolle\",\"doi\":\"10.1093/jigpal/jzae013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to enhance security in IoT device networks through a visual tool that utilizes three projection techniques, including Beta Hebbian Learning (BHL), t-distributed Stochastic Neighbor Embedding (t-SNE) and ISOMAP, in order to facilitate the identification of network attacks by human experts. This work research begins with the creation of a testing environment with IoT devices and web clients, simulating attacks over Message Queuing Telemetry Transport (MQTT) for recording all relevant traffic information. The unsupervised algorithms chosen provide a set of projections that enable human experts to visually identify most attacks in real-time, making it a powerful tool that can be implemented in IoT environments easily.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Beta Hebbian Learning for intrusion detection in networks with MQTT Protocols for IoT devices
This paper aims to enhance security in IoT device networks through a visual tool that utilizes three projection techniques, including Beta Hebbian Learning (BHL), t-distributed Stochastic Neighbor Embedding (t-SNE) and ISOMAP, in order to facilitate the identification of network attacks by human experts. This work research begins with the creation of a testing environment with IoT devices and web clients, simulating attacks over Message Queuing Telemetry Transport (MQTT) for recording all relevant traffic information. The unsupervised algorithms chosen provide a set of projections that enable human experts to visually identify most attacks in real-time, making it a powerful tool that can be implemented in IoT environments easily.