Jun Zhao, Muhammad Sufian, Mohammed Awad Abuhussain, Fadi Althoey, Ahmed Farouk Deifalla
{"title":"探索农业废弃物作为可持续建筑用超高性能混凝土添加剂的潜力:综述","authors":"Jun Zhao, Muhammad Sufian, Mohammed Awad Abuhussain, Fadi Althoey, Ahmed Farouk Deifalla","doi":"10.1515/rams-2023-0181","DOIUrl":null,"url":null,"abstract":"This study thoroughly reviews the recent design methods for ultra-high-performance concrete (UHPC) with agricultural waste. The goal is to identify UHPC composites that meets environmental sustainability requirements while fulfilling workability, durability, and mechanical properties. The capacity of typical review studies is limited in bridging the various literature aspects systematically. The article includes comparative analyses identifying these methods’ intrinsic connections and current trends. The analysis indicates that 71% of documents on incorporating agricultural waste into UHPC are in the “Engineering” and “Materials Science” disciplines, with 69% being journal articles, and 27% conference documents. Significant research keywords involve “Ultra-High-Performance Concrete,” “Cements,” “Sustainable Development,” and “Agricultural Wastes,” highlighting the extensive exploration of agricultural waste in UHPC. It has been discovered that agricultural waste can replace silica fume in UHPC, improving strength and durability by reducing pore volume and enhancing microstructure. Substituting 5–30% of cement with rice husk ash significantly boosts compressive strength, enhancing cement hydration, pore structure, and pozzolanic reaction, offering substantial environmental benefits and supporting the construction industry’s contribution to low-carbon sustainable development. This article provides guidance and recommendations for developing sustainable UHPC to meet diverse design specifications, promoting environmentally friendly construction practices.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"17 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the potential of agricultural waste as an additive in ultra-high-performance concrete for sustainable construction: A comprehensive review\",\"authors\":\"Jun Zhao, Muhammad Sufian, Mohammed Awad Abuhussain, Fadi Althoey, Ahmed Farouk Deifalla\",\"doi\":\"10.1515/rams-2023-0181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study thoroughly reviews the recent design methods for ultra-high-performance concrete (UHPC) with agricultural waste. The goal is to identify UHPC composites that meets environmental sustainability requirements while fulfilling workability, durability, and mechanical properties. The capacity of typical review studies is limited in bridging the various literature aspects systematically. The article includes comparative analyses identifying these methods’ intrinsic connections and current trends. The analysis indicates that 71% of documents on incorporating agricultural waste into UHPC are in the “Engineering” and “Materials Science” disciplines, with 69% being journal articles, and 27% conference documents. Significant research keywords involve “Ultra-High-Performance Concrete,” “Cements,” “Sustainable Development,” and “Agricultural Wastes,” highlighting the extensive exploration of agricultural waste in UHPC. It has been discovered that agricultural waste can replace silica fume in UHPC, improving strength and durability by reducing pore volume and enhancing microstructure. Substituting 5–30% of cement with rice husk ash significantly boosts compressive strength, enhancing cement hydration, pore structure, and pozzolanic reaction, offering substantial environmental benefits and supporting the construction industry’s contribution to low-carbon sustainable development. This article provides guidance and recommendations for developing sustainable UHPC to meet diverse design specifications, promoting environmentally friendly construction practices.\",\"PeriodicalId\":54484,\"journal\":{\"name\":\"Reviews on Advanced Materials Science\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews on Advanced Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/rams-2023-0181\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2023-0181","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the potential of agricultural waste as an additive in ultra-high-performance concrete for sustainable construction: A comprehensive review
This study thoroughly reviews the recent design methods for ultra-high-performance concrete (UHPC) with agricultural waste. The goal is to identify UHPC composites that meets environmental sustainability requirements while fulfilling workability, durability, and mechanical properties. The capacity of typical review studies is limited in bridging the various literature aspects systematically. The article includes comparative analyses identifying these methods’ intrinsic connections and current trends. The analysis indicates that 71% of documents on incorporating agricultural waste into UHPC are in the “Engineering” and “Materials Science” disciplines, with 69% being journal articles, and 27% conference documents. Significant research keywords involve “Ultra-High-Performance Concrete,” “Cements,” “Sustainable Development,” and “Agricultural Wastes,” highlighting the extensive exploration of agricultural waste in UHPC. It has been discovered that agricultural waste can replace silica fume in UHPC, improving strength and durability by reducing pore volume and enhancing microstructure. Substituting 5–30% of cement with rice husk ash significantly boosts compressive strength, enhancing cement hydration, pore structure, and pozzolanic reaction, offering substantial environmental benefits and supporting the construction industry’s contribution to low-carbon sustainable development. This article provides guidance and recommendations for developing sustainable UHPC to meet diverse design specifications, promoting environmentally friendly construction practices.
期刊介绍:
Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.