新随机富比尼定理

Tahir Choulli, Martin Schweizer
{"title":"新随机富比尼定理","authors":"Tahir Choulli, Martin Schweizer","doi":"arxiv-2403.13791","DOIUrl":null,"url":null,"abstract":"The classic stochastic Fubini theorem says that if one stochastically\nintegrates with respect to a semimartingale $S$ an $\\eta(dz)$-mixture of\n$z$-parametrized integrands $\\psi^z$, the result is just the $\\eta(dz)$-mixture\nof the individual $z$-parametrized stochastic integrals $\\int\\psi^z{d}S.$ But\nif one wants to use such a result for the study of Volterra semimartingales of\nthe form $ X_t =\\int_0^t \\Psi_{t,s}dS_s, t \\geq0,$ the classic assumption that\none has a fixed measure $\\eta$ is too restrictive; the mixture over the\nintegrands needs to be taken instead with respect to a stochastic kernel on the\nparameter space. To handle that situation and prove a corresponding new\nstochastic Fubini theorem, we introduce a new notion of measure-valued\nstochastic integration with respect to a general multidimensional\nsemimartingale. As an application, we show how this allows to handle a class of\nquite general stochastic Volterra semimartingales.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"293 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Stochastic Fubini Theorems\",\"authors\":\"Tahir Choulli, Martin Schweizer\",\"doi\":\"arxiv-2403.13791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classic stochastic Fubini theorem says that if one stochastically\\nintegrates with respect to a semimartingale $S$ an $\\\\eta(dz)$-mixture of\\n$z$-parametrized integrands $\\\\psi^z$, the result is just the $\\\\eta(dz)$-mixture\\nof the individual $z$-parametrized stochastic integrals $\\\\int\\\\psi^z{d}S.$ But\\nif one wants to use such a result for the study of Volterra semimartingales of\\nthe form $ X_t =\\\\int_0^t \\\\Psi_{t,s}dS_s, t \\\\geq0,$ the classic assumption that\\none has a fixed measure $\\\\eta$ is too restrictive; the mixture over the\\nintegrands needs to be taken instead with respect to a stochastic kernel on the\\nparameter space. To handle that situation and prove a corresponding new\\nstochastic Fubini theorem, we introduce a new notion of measure-valued\\nstochastic integration with respect to a general multidimensional\\nsemimartingale. As an application, we show how this allows to handle a class of\\nquite general stochastic Volterra semimartingales.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"293 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.13791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经典的随机富比尼定理指出,如果对一个半马尔泰勒$S$进行随机积分,并对$z$参数化积分$\psi^z$的$\eta(dz)$混合物进行随机积分,其结果就是单个$z$参数化随机积分$\int\psi^z{d}S的$\eta(dz)$混合物。但是,如果我们想用这样的结果来研究形式为 $ X_t =\int_0^t \Psi_{t,s}dS_s, t \geq0 的 Volterra semimartingales,那么我们必须假设有一个固定的度量 $\eta$ ,这样的经典假设限制性太强;我们需要用参数空间上的随机核来代替积分的混合物。为了处理这种情况并证明相应的新随机富比尼定理,我们引入了一个关于一般多维随机积分的新概念。作为应用,我们展示了这如何允许处理一类相当一般的随机 Volterra semimartingales。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Stochastic Fubini Theorems
The classic stochastic Fubini theorem says that if one stochastically integrates with respect to a semimartingale $S$ an $\eta(dz)$-mixture of $z$-parametrized integrands $\psi^z$, the result is just the $\eta(dz)$-mixture of the individual $z$-parametrized stochastic integrals $\int\psi^z{d}S.$ But if one wants to use such a result for the study of Volterra semimartingales of the form $ X_t =\int_0^t \Psi_{t,s}dS_s, t \geq0,$ the classic assumption that one has a fixed measure $\eta$ is too restrictive; the mixture over the integrands needs to be taken instead with respect to a stochastic kernel on the parameter space. To handle that situation and prove a corresponding new stochastic Fubini theorem, we introduce a new notion of measure-valued stochastic integration with respect to a general multidimensional semimartingale. As an application, we show how this allows to handle a class of quite general stochastic Volterra semimartingales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信