{"title":"局部自由等距李群作用的谱序","authors":"Paweł Raźny","doi":"10.1007/s00031-024-09855-2","DOIUrl":null,"url":null,"abstract":"<p>We present a spectral sequence for free isometric Lie algebra actions (and consequently locally free isometric Lie group actions) which relates the de Rham cohomology of the manifold with the Lie algebra cohomology and basic cohomology (intuitively the cohomology of the orbit space). In the process of developing this sequence, we introduce a new description of the de Rham cohomology of manifolds with such actions which appears to be well suited to this and similar problems. Finally, we provide some simple applications generalizing the Wang long exact sequence to Lie algebra actions of low codimension.</p>","PeriodicalId":49423,"journal":{"name":"Transformation Groups","volume":"24 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spectral Sequence for Locally Free Isometric Lie Group Actions\",\"authors\":\"Paweł Raźny\",\"doi\":\"10.1007/s00031-024-09855-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a spectral sequence for free isometric Lie algebra actions (and consequently locally free isometric Lie group actions) which relates the de Rham cohomology of the manifold with the Lie algebra cohomology and basic cohomology (intuitively the cohomology of the orbit space). In the process of developing this sequence, we introduce a new description of the de Rham cohomology of manifolds with such actions which appears to be well suited to this and similar problems. Finally, we provide some simple applications generalizing the Wang long exact sequence to Lie algebra actions of low codimension.</p>\",\"PeriodicalId\":49423,\"journal\":{\"name\":\"Transformation Groups\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transformation Groups\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09855-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transformation Groups","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09855-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Spectral Sequence for Locally Free Isometric Lie Group Actions
We present a spectral sequence for free isometric Lie algebra actions (and consequently locally free isometric Lie group actions) which relates the de Rham cohomology of the manifold with the Lie algebra cohomology and basic cohomology (intuitively the cohomology of the orbit space). In the process of developing this sequence, we introduce a new description of the de Rham cohomology of manifolds with such actions which appears to be well suited to this and similar problems. Finally, we provide some simple applications generalizing the Wang long exact sequence to Lie algebra actions of low codimension.
期刊介绍:
Transformation Groups will only accept research articles containing new results, complete Proofs, and an abstract. Topics include: Lie groups and Lie algebras; Lie transformation groups and holomorphic transformation groups; Algebraic groups; Invariant theory; Geometry and topology of homogeneous spaces; Discrete subgroups of Lie groups; Quantum groups and enveloping algebras; Group aspects of conformal field theory; Kac-Moody groups and algebras; Lie supergroups and superalgebras.