局部自由等距李群作用的谱序

Pub Date : 2024-03-21 DOI:10.1007/s00031-024-09855-2
Paweł Raźny
{"title":"局部自由等距李群作用的谱序","authors":"Paweł Raźny","doi":"10.1007/s00031-024-09855-2","DOIUrl":null,"url":null,"abstract":"<p>We present a spectral sequence for free isometric Lie algebra actions (and consequently locally free isometric Lie group actions) which relates the de Rham cohomology of the manifold with the Lie algebra cohomology and basic cohomology (intuitively the cohomology of the orbit space). In the process of developing this sequence, we introduce a new description of the de Rham cohomology of manifolds with such actions which appears to be well suited to this and similar problems. Finally, we provide some simple applications generalizing the Wang long exact sequence to Lie algebra actions of low codimension.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spectral Sequence for Locally Free Isometric Lie Group Actions\",\"authors\":\"Paweł Raźny\",\"doi\":\"10.1007/s00031-024-09855-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a spectral sequence for free isometric Lie algebra actions (and consequently locally free isometric Lie group actions) which relates the de Rham cohomology of the manifold with the Lie algebra cohomology and basic cohomology (intuitively the cohomology of the orbit space). In the process of developing this sequence, we introduce a new description of the de Rham cohomology of manifolds with such actions which appears to be well suited to this and similar problems. Finally, we provide some simple applications generalizing the Wang long exact sequence to Lie algebra actions of low codimension.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09855-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09855-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了自由等距李代数作用(进而是局部自由等距李群作用)的谱序列,它将流形的德拉姆同调与李代数同调和基本同调(直观上是轨道空间的同调)联系起来。在发展这个序列的过程中,我们引入了具有此类作用的流形的德拉姆同调的新描述,它似乎非常适合这个问题和类似问题。最后,我们提供了一些简单的应用,将王长精确序列推广到低码维的李代数作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Spectral Sequence for Locally Free Isometric Lie Group Actions

We present a spectral sequence for free isometric Lie algebra actions (and consequently locally free isometric Lie group actions) which relates the de Rham cohomology of the manifold with the Lie algebra cohomology and basic cohomology (intuitively the cohomology of the orbit space). In the process of developing this sequence, we introduce a new description of the de Rham cohomology of manifolds with such actions which appears to be well suited to this and similar problems. Finally, we provide some simple applications generalizing the Wang long exact sequence to Lie algebra actions of low codimension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信