用再循环单位跨越多资产报酬率

Sébastien BossuLPSM, UPCité, Stéphane CrépeyLPSM, UPCité, Hoang-Dung NguyenLPSM, UPCité
{"title":"用再循环单位跨越多资产报酬率","authors":"Sébastien BossuLPSM, UPCité, Stéphane CrépeyLPSM, UPCité, Hoang-Dung NguyenLPSM, UPCité","doi":"arxiv-2403.14231","DOIUrl":null,"url":null,"abstract":"We propose a distributional formulation of the spanning problem of a\nmulti-asset payoff by vanilla basket options. This problem is shown to have a\nunique solution if and only if the payoff function is even and absolutely\nhomogeneous, and we establish a Fourier-based formula to calculate the\nsolution. Financial payoffs are typically piecewise linear, resulting in a\nsolution that may be derived explicitly, yet may also be hard to numerically\nexploit. One-hidden-layer feedforward neural networks instead provide a natural\nand efficient numerical alternative for discrete spanning. We test this\napproach for a selection of archetypal payoffs and obtain better hedging\nresults with vanilla basket options compared to industry-favored approaches\nbased on single-asset vanilla hedges.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spanning Multi-Asset Payoffs With ReLUs\",\"authors\":\"Sébastien BossuLPSM, UPCité, Stéphane CrépeyLPSM, UPCité, Hoang-Dung NguyenLPSM, UPCité\",\"doi\":\"arxiv-2403.14231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a distributional formulation of the spanning problem of a\\nmulti-asset payoff by vanilla basket options. This problem is shown to have a\\nunique solution if and only if the payoff function is even and absolutely\\nhomogeneous, and we establish a Fourier-based formula to calculate the\\nsolution. Financial payoffs are typically piecewise linear, resulting in a\\nsolution that may be derived explicitly, yet may also be hard to numerically\\nexploit. One-hidden-layer feedforward neural networks instead provide a natural\\nand efficient numerical alternative for discrete spanning. We test this\\napproach for a selection of archetypal payoffs and obtain better hedging\\nresults with vanilla basket options compared to industry-favored approaches\\nbased on single-asset vanilla hedges.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.14231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.14231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了虚值一篮子期权多资产报酬跨度问题的分布式表述。当且仅当报酬函数是偶数且绝对同质时,该问题才有唯一的解,我们建立了一个基于傅立叶的公式来计算该解。金融报酬通常是片断线性的,因此可以显式推导出解法,但也可能难以在数值上加以利用。而单隐层前馈神经网络则为离散跨度提供了一种自然高效的数值替代方法。我们对这一方法进行了测试,并选择了一些典型的报酬率,结果发现,与业界推崇的基于单一资产虚值对冲的方法相比,虚值一篮子期权的对冲效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spanning Multi-Asset Payoffs With ReLUs
We propose a distributional formulation of the spanning problem of a multi-asset payoff by vanilla basket options. This problem is shown to have a unique solution if and only if the payoff function is even and absolutely homogeneous, and we establish a Fourier-based formula to calculate the solution. Financial payoffs are typically piecewise linear, resulting in a solution that may be derived explicitly, yet may also be hard to numerically exploit. One-hidden-layer feedforward neural networks instead provide a natural and efficient numerical alternative for discrete spanning. We test this approach for a selection of archetypal payoffs and obtain better hedging results with vanilla basket options compared to industry-favored approaches based on single-asset vanilla hedges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信