基于故障重构的轧机主传动系统容错控制

IF 1.4 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Ruicheng Zhang, Pengfei Li, Weizheng Liang
{"title":"基于故障重构的轧机主传动系统容错控制","authors":"Ruicheng Zhang, Pengfei Li, Weizheng Liang","doi":"10.1177/09596518241233640","DOIUrl":null,"url":null,"abstract":"A mathematical model of the main drive system of rolling mill is developed for the motor armature faults in the main drive system of rolling mill, taking into account the effects of nonlinear damping, friction damping between rolls and external perturbations on the system during operation. The unknown input observer is designed to process perturbations and errors as unknown inputs, and the [Formula: see text] performance index is designed to improve the robustness of the unknown input observer to fault reconfiguration. At the same time, in order to ensure the stability of the main drive system of rolling mill after the occurrence of faults, an active fault-tolerant controller is designed for the main drive system of rolling mill after obtaining the accurate fault reconfiguration value, which realizes the active fault-tolerant control of the main drive system of rolling mill. Through the simulation study on the main drive system of 2030 mm cold rolling mill stand F4, it is shown that the system is restored to the normal state after adding the fault-tolerant controller, and the motor angular speed error and roll angular speed error are 2.12% and 2.43%, respectively. Comparing with the fault-tolerant control method based on fault estimation, the root-mean-square errors of the motor angular speed and roll angular speed estimates of the designed fault-tolerant control method are reduced by 4.24% and 3.28%, respectively. Simulation verifies the effectiveness of the proposed method.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"9 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault-tolerant control of the main drive system of rolling mill based on fault reconfiguration\",\"authors\":\"Ruicheng Zhang, Pengfei Li, Weizheng Liang\",\"doi\":\"10.1177/09596518241233640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model of the main drive system of rolling mill is developed for the motor armature faults in the main drive system of rolling mill, taking into account the effects of nonlinear damping, friction damping between rolls and external perturbations on the system during operation. The unknown input observer is designed to process perturbations and errors as unknown inputs, and the [Formula: see text] performance index is designed to improve the robustness of the unknown input observer to fault reconfiguration. At the same time, in order to ensure the stability of the main drive system of rolling mill after the occurrence of faults, an active fault-tolerant controller is designed for the main drive system of rolling mill after obtaining the accurate fault reconfiguration value, which realizes the active fault-tolerant control of the main drive system of rolling mill. Through the simulation study on the main drive system of 2030 mm cold rolling mill stand F4, it is shown that the system is restored to the normal state after adding the fault-tolerant controller, and the motor angular speed error and roll angular speed error are 2.12% and 2.43%, respectively. Comparing with the fault-tolerant control method based on fault estimation, the root-mean-square errors of the motor angular speed and roll angular speed estimates of the designed fault-tolerant control method are reduced by 4.24% and 3.28%, respectively. Simulation verifies the effectiveness of the proposed method.\",\"PeriodicalId\":20638,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/09596518241233640\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/09596518241233640","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对轧机主传动系统中的电机电枢故障,考虑了非线性阻尼、轧辊间摩擦阻尼和外部扰动对系统运行的影响,建立了轧机主传动系统数学模型。设计未知输入观测器的目的是将扰动和误差作为未知输入进行处理,设计[公式:见正文]性能指标的目的是提高未知输入观测器对故障重构的鲁棒性。同时,为了保证轧机主传动系统在发生故障后的稳定性,在得到准确的故障重配置值后,为轧机主传动系统设计了主动容错控制器,实现了轧机主传动系统的主动容错控制。通过对 2030 mm 冷轧机机架 F4 主传动系统的仿真研究表明,加入容错控制器后,系统恢复到正常状态,电机角速度误差和轧辊角速度误差分别为 2.12% 和 2.43%。与基于故障估计的容错控制方法相比,设计的容错控制方法的电机角速度和滚动角速度估计值的均方根误差分别降低了 4.24% 和 3.28%。仿真验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault-tolerant control of the main drive system of rolling mill based on fault reconfiguration
A mathematical model of the main drive system of rolling mill is developed for the motor armature faults in the main drive system of rolling mill, taking into account the effects of nonlinear damping, friction damping between rolls and external perturbations on the system during operation. The unknown input observer is designed to process perturbations and errors as unknown inputs, and the [Formula: see text] performance index is designed to improve the robustness of the unknown input observer to fault reconfiguration. At the same time, in order to ensure the stability of the main drive system of rolling mill after the occurrence of faults, an active fault-tolerant controller is designed for the main drive system of rolling mill after obtaining the accurate fault reconfiguration value, which realizes the active fault-tolerant control of the main drive system of rolling mill. Through the simulation study on the main drive system of 2030 mm cold rolling mill stand F4, it is shown that the system is restored to the normal state after adding the fault-tolerant controller, and the motor angular speed error and roll angular speed error are 2.12% and 2.43%, respectively. Comparing with the fault-tolerant control method based on fault estimation, the root-mean-square errors of the motor angular speed and roll angular speed estimates of the designed fault-tolerant control method are reduced by 4.24% and 3.28%, respectively. Simulation verifies the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
18.80%
发文量
99
审稿时长
4.2 months
期刊介绍: Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies. "It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信