{"title":"詹森方程和其他函数方程的异化和稳定性","authors":"Mohamed Tial, Driss Zeglami","doi":"10.1007/s00010-024-01046-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>S</i> be a semigroup and <span>\\(\\mathbb {K}\\)</span> be the field of real or complex numbers. We deal with the stability and alienation of Cauchy’s multiplicative (resp. additive) and Jensen’s functional equations, starting from the inequalities </p><span>$$\\begin{aligned} \\left| f(xy)+f(x\\sigma y)+g(xy)-2f(x)-g(x)g(y)\\right|\\le & {} \\varepsilon ,\\ \\;x,y\\in S, \\\\ \\left| f(xy)+f(x\\sigma y)+g(xy)-2f(x)-g(x)-g(y)\\right|\\le & {} \\varepsilon ,\\ \\;x,y\\in S, \\end{aligned}$$</span><p>where <span>\\(f,g:S\\rightarrow \\mathbb {K}\\)</span> and <span>\\(\\sigma \\)</span> is an involutive automorphism on <i>S</i>. We also consider analogous problems for Jensen’s and the quadratic (resp. Drygas) functional equations with an involutive automorphism.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alienation and stability of Jensen’s and other functional equations\",\"authors\":\"Mohamed Tial, Driss Zeglami\",\"doi\":\"10.1007/s00010-024-01046-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>S</i> be a semigroup and <span>\\\\(\\\\mathbb {K}\\\\)</span> be the field of real or complex numbers. We deal with the stability and alienation of Cauchy’s multiplicative (resp. additive) and Jensen’s functional equations, starting from the inequalities </p><span>$$\\\\begin{aligned} \\\\left| f(xy)+f(x\\\\sigma y)+g(xy)-2f(x)-g(x)g(y)\\\\right|\\\\le & {} \\\\varepsilon ,\\\\ \\\\;x,y\\\\in S, \\\\\\\\ \\\\left| f(xy)+f(x\\\\sigma y)+g(xy)-2f(x)-g(x)-g(y)\\\\right|\\\\le & {} \\\\varepsilon ,\\\\ \\\\;x,y\\\\in S, \\\\end{aligned}$$</span><p>where <span>\\\\(f,g:S\\\\rightarrow \\\\mathbb {K}\\\\)</span> and <span>\\\\(\\\\sigma \\\\)</span> is an involutive automorphism on <i>S</i>. We also consider analogous problems for Jensen’s and the quadratic (resp. Drygas) functional equations with an involutive automorphism.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01046-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01046-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alienation and stability of Jensen’s and other functional equations
Let S be a semigroup and \(\mathbb {K}\) be the field of real or complex numbers. We deal with the stability and alienation of Cauchy’s multiplicative (resp. additive) and Jensen’s functional equations, starting from the inequalities
where \(f,g:S\rightarrow \mathbb {K}\) and \(\sigma \) is an involutive automorphism on S. We also consider analogous problems for Jensen’s and the quadratic (resp. Drygas) functional equations with an involutive automorphism.