通过最小流量问题预测和修正人流量

Hamza Ennaji, Noureddine Igbida, Ghadir Jradi
{"title":"通过最小流量问题预测和修正人流量","authors":"Hamza Ennaji, Noureddine Igbida, Ghadir Jradi","doi":"10.1142/s0218202524500052","DOIUrl":null,"url":null,"abstract":"<p>We study a new variant of mathematical prediction-correction model for crowd motion. The prediction phase is handled by a transport equation where the vector field is computed via an eikonal equation <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo>∥</mo><mo>∇</mo><mi>φ</mi><mo>∥</mo><mo>=</mo><mi>f</mi></math></span><span></span>, with a positive continuous function <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> connected to the speed of the spontaneous travel. The correction phase is handled by a new version of the minimum flow problem. This model is flexible and can take into account different types of interactions between the agents, from gradient flow in Wassersetin space to granular type dynamics like in sandpile. Furthermore, different boundary conditions can be used, such as non-homogeneous Dirichlet (e.g. outings with different exit-cost penalty) and Neumann boundary conditions (e.g. entrances with different rates). Combining finite volume method for the transport equation and Chambolle–Pock’s primal dual algorithm for the eikonal equation and minimum flow problem, we present numerical simulations to demonstrate the behavior in different scenarios.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction-correction pedestrian flow by means of minimum flow problem\",\"authors\":\"Hamza Ennaji, Noureddine Igbida, Ghadir Jradi\",\"doi\":\"10.1142/s0218202524500052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a new variant of mathematical prediction-correction model for crowd motion. The prediction phase is handled by a transport equation where the vector field is computed via an eikonal equation <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>∥</mo><mo>∇</mo><mi>φ</mi><mo>∥</mo><mo>=</mo><mi>f</mi></math></span><span></span>, with a positive continuous function <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi></math></span><span></span> connected to the speed of the spontaneous travel. The correction phase is handled by a new version of the minimum flow problem. This model is flexible and can take into account different types of interactions between the agents, from gradient flow in Wassersetin space to granular type dynamics like in sandpile. Furthermore, different boundary conditions can be used, such as non-homogeneous Dirichlet (e.g. outings with different exit-cost penalty) and Neumann boundary conditions (e.g. entrances with different rates). Combining finite volume method for the transport equation and Chambolle–Pock’s primal dual algorithm for the eikonal equation and minimum flow problem, we present numerical simulations to demonstrate the behavior in different scenarios.</p>\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202524500052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了人群运动数学预测-校正模型的一种新变体。预测阶段由传输方程处理,其中矢量场是通过 eikonal 方程 ∥∇φ∥=f 计算的,而正连续函数 f 与自发移动的速度有关。修正阶段由新版本的最小流量问题处理。这个模型非常灵活,可以考虑到不同类型的介质之间的相互作用,从瓦塞尔塞廷空间的梯度流到沙堆中的颗粒型动力学。此外,还可以使用不同的边界条件,例如非均质 Dirichlet(例如具有不同出口成本惩罚的出口)和 Neumann 边界条件(例如具有不同速率的入口)。我们将有限体积法用于传输方程,将 Chambolle-Pock 原始对偶算法用于 eikonal 方程和最小流量问题,并进行了数值模拟,以演示不同情况下的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction-correction pedestrian flow by means of minimum flow problem

We study a new variant of mathematical prediction-correction model for crowd motion. The prediction phase is handled by a transport equation where the vector field is computed via an eikonal equation φ=f, with a positive continuous function f connected to the speed of the spontaneous travel. The correction phase is handled by a new version of the minimum flow problem. This model is flexible and can take into account different types of interactions between the agents, from gradient flow in Wassersetin space to granular type dynamics like in sandpile. Furthermore, different boundary conditions can be used, such as non-homogeneous Dirichlet (e.g. outings with different exit-cost penalty) and Neumann boundary conditions (e.g. entrances with different rates). Combining finite volume method for the transport equation and Chambolle–Pock’s primal dual algorithm for the eikonal equation and minimum flow problem, we present numerical simulations to demonstrate the behavior in different scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信