一般不相容的 Korn-Maxwell-Sobolev 不等式

Franz Gmeineder, Peter Lewintan, Patrizio Neff
{"title":"一般不相容的 Korn-Maxwell-Sobolev 不等式","authors":"Franz Gmeineder, Peter Lewintan, Patrizio Neff","doi":"10.1142/s0218202524500088","DOIUrl":null,"url":null,"abstract":"<p>We establish a family of coercive Korn-type inequalities for generalized incompatible fields in the superlinear growth regime under sharp criteria. This extends and unifies several previously known inequalities that are pivotal to the existence theory for a multitude of models in continuum mechanics in an optimal way. Different from our preceding work [F. Gmeineder, P. Lewintan and P. Neff, Optimal incompatible Korn–Maxwell–Sobolev inequalities in all dimensions, <i>Calc. Var. PDE</i> <b>62</b> (2023) 182], where we focused on the case <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo>=</mo><mn>1</mn></math></span><span></span> and incompatibilities governed by the matrix curl, the case <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span><span></span> considered in this paper gives us access to substantially stronger results from harmonic analysis but conversely deals with more general incompatibilities. Especially, we obtain sharp generalizations of recently proved inequalities by P. Lewintan, S. Müller and P. Neff [Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy, <i>Calc. Var. PDE</i> <b>60</b> (2021) 150] in the realm of incompatible Korn-type inequalities with conformally invariant dislocation energy. However, being applicable to higher-order scenarios as well, our approach equally gives the first and sharp inequalities involving Kröner’s incompability tensor <b>inc</b>.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Korn–Maxwell–Sobolev inequalities for general incompatibilities\",\"authors\":\"Franz Gmeineder, Peter Lewintan, Patrizio Neff\",\"doi\":\"10.1142/s0218202524500088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish a family of coercive Korn-type inequalities for generalized incompatible fields in the superlinear growth regime under sharp criteria. This extends and unifies several previously known inequalities that are pivotal to the existence theory for a multitude of models in continuum mechanics in an optimal way. Different from our preceding work [F. Gmeineder, P. Lewintan and P. Neff, Optimal incompatible Korn–Maxwell–Sobolev inequalities in all dimensions, <i>Calc. Var. PDE</i> <b>62</b> (2023) 182], where we focused on the case <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi><mo>=</mo><mn>1</mn></math></span><span></span> and incompatibilities governed by the matrix curl, the case <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span><span></span> considered in this paper gives us access to substantially stronger results from harmonic analysis but conversely deals with more general incompatibilities. Especially, we obtain sharp generalizations of recently proved inequalities by P. Lewintan, S. Müller and P. Neff [Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy, <i>Calc. Var. PDE</i> <b>60</b> (2021) 150] in the realm of incompatible Korn-type inequalities with conformally invariant dislocation energy. However, being applicable to higher-order scenarios as well, our approach equally gives the first and sharp inequalities involving Kröner’s incompability tensor <b>inc</b>.</p>\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202524500088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为超线性增长机制下的广义不相容场建立了一系列尖锐标准下的胁迫科恩式不等式。这扩展并统一了之前已知的几个不等式,这些不等式对连续介质力学中多种模型的存在性理论至关重要。不同于我们之前的工作 [F. Gmeineder, P. LewGmeineder, P. Lewintan and P. Neff, Optimal incompatible Korn-Maxwell-Sobolev inequalities in all dimensions, Calc.Calc.PDE 62 (2023) 182],其中我们关注的是 p=1 的情况和由矩阵卷曲支配的不相容性,而本文考虑的 p>1 的情况让我们从谐波分析中获得了更强的结果,但反过来也处理了更普遍的不相容性。特别是,我们得到了 P. Lewintan、S. Müller 和 P. Neff [Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy, Calc.Var.PDE 60 (2021) 150]中的不相容科恩式不等式与保角不变位错能。然而,由于我们的方法也适用于高阶情形,因此同样给出了涉及克罗纳不相容张量 inc.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Korn–Maxwell–Sobolev inequalities for general incompatibilities

We establish a family of coercive Korn-type inequalities for generalized incompatible fields in the superlinear growth regime under sharp criteria. This extends and unifies several previously known inequalities that are pivotal to the existence theory for a multitude of models in continuum mechanics in an optimal way. Different from our preceding work [F. Gmeineder, P. Lewintan and P. Neff, Optimal incompatible Korn–Maxwell–Sobolev inequalities in all dimensions, Calc. Var. PDE 62 (2023) 182], where we focused on the case p=1 and incompatibilities governed by the matrix curl, the case p>1 considered in this paper gives us access to substantially stronger results from harmonic analysis but conversely deals with more general incompatibilities. Especially, we obtain sharp generalizations of recently proved inequalities by P. Lewintan, S. Müller and P. Neff [Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy, Calc. Var. PDE 60 (2021) 150] in the realm of incompatible Korn-type inequalities with conformally invariant dislocation energy. However, being applicable to higher-order scenarios as well, our approach equally gives the first and sharp inequalities involving Kröner’s incompability tensor inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信