衍射学中的淹没、沉浸和阶梯映射

Pub Date : 2024-05-01 DOI:10.1016/j.indag.2024.03.004
Alireza Ahmadi
{"title":"衍射学中的淹没、沉浸和阶梯映射","authors":"Alireza Ahmadi","doi":"10.1016/j.indag.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Although structural maps such as subductions and inductions appear naturally in diffeology, one of the challenges is providing suitable analogues for submersions, immersions, and étale maps (i.e., local diffeomorphisms) consistent with the classical versions of these maps between manifolds. In this paper, we consider diffeological or plotwise versions of submersions, immersions, and étale maps as an adaptation of these maps to diffeology by a nonlinear approach. We study their diffeological properties from different aspects in a systematic fashion with respect to the germs of plots.</p><p>In order to characterize the considered maps from their linear behaviors, we introduce a class of diffeological spaces, so-called diffeological étale manifolds, which not only contains the usual manifolds but also includes irrational tori. We state and prove versions of the rank and implicit function theorems, as well as the fundamental theorem on flows in this class. As an application, we use the results of this work to facilitate the computations of the internal tangent spaces and diffeological dimensions in a few interesting cases.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submersions, immersions, and étale maps in diffeology\",\"authors\":\"Alireza Ahmadi\",\"doi\":\"10.1016/j.indag.2024.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although structural maps such as subductions and inductions appear naturally in diffeology, one of the challenges is providing suitable analogues for submersions, immersions, and étale maps (i.e., local diffeomorphisms) consistent with the classical versions of these maps between manifolds. In this paper, we consider diffeological or plotwise versions of submersions, immersions, and étale maps as an adaptation of these maps to diffeology by a nonlinear approach. We study their diffeological properties from different aspects in a systematic fashion with respect to the germs of plots.</p><p>In order to characterize the considered maps from their linear behaviors, we introduce a class of diffeological spaces, so-called diffeological étale manifolds, which not only contains the usual manifolds but also includes irrational tori. We state and prove versions of the rank and implicit function theorems, as well as the fundamental theorem on flows in this class. As an application, we use the results of this work to facilitate the computations of the internal tangent spaces and diffeological dimensions in a few interesting cases.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然结构映射(如子归纳和归纳)会自然地出现在差分学中,但我们面临的挑战之一是为流形间的潜入映射、浸入映射和étale映射(即局部差分变形)提供与这些映射的经典版本相一致的合适类比。在本文中,我们考虑了淹没、浸入和阶梯映射的差分学或情节学版本,作为这些映射通过非线性方法对差分学的适应。我们从不同方面系统地研究了它们的差分学性质与图根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Submersions, immersions, and étale maps in diffeology

Although structural maps such as subductions and inductions appear naturally in diffeology, one of the challenges is providing suitable analogues for submersions, immersions, and étale maps (i.e., local diffeomorphisms) consistent with the classical versions of these maps between manifolds. In this paper, we consider diffeological or plotwise versions of submersions, immersions, and étale maps as an adaptation of these maps to diffeology by a nonlinear approach. We study their diffeological properties from different aspects in a systematic fashion with respect to the germs of plots.

In order to characterize the considered maps from their linear behaviors, we introduce a class of diffeological spaces, so-called diffeological étale manifolds, which not only contains the usual manifolds but also includes irrational tori. We state and prove versions of the rank and implicit function theorems, as well as the fundamental theorem on flows in this class. As an application, we use the results of this work to facilitate the computations of the internal tangent spaces and diffeological dimensions in a few interesting cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信